ASSESSING EFFECTIVENESS: CONVERGENCE ORDER, CONSISTENCY, AND STABILITY IN NEWLY SUGGESTED APPROACHES #### Chinedu O. Nwachukwu and Chinelo T. Okoro Mathematics Department, College of Natural Sciences, Enugu State University of Science and Technology, Enugu, Nigeria Abstract: Mathematical modeling serves as a vital tool for interpreting real-world scenarios through the lens of mathematical symbols and relationships, commonly applied across various disciplines including Sciences and Engineering. Through the development of models, researchers aim to gain insights into complex physical phenomena, often resulting in the formulation of differential equations containing derivatives of unknown functions. These equations, termed as Differential Equations, serve as foundational components in understanding phenomena spanning from physical sciences to fields as diverse as Economics, Medicine, Psychology, and Operation Research, extending even into domains like Biology and Anthropology. However, the quest for analytical solutions to these differential equations, stemming from real-life modeling endeavors, often presents formidable challenges. Many equations arising from such modeling efforts defy straightforward analytical solutions, necessitating the exploration of alternative methods for their resolution. This abstract underscores the ubiquity of differential equations across numerous disciplines and emphasizes the significance of mathematical modeling in advancing understanding and problemsolving capabilities. It highlights the interdisciplinary nature of differential equations, transcending traditional boundaries and finding applications in diverse fields. Moreover, it acknowledges the inherent complexity associated with obtaining analytical solutions to these equations, paving the way for the exploration of alternative solution strategies. **Keywords:** Mathematical modeling, Differential equations, Interdisciplinary applications, Analytical solutions, Problemsolving. #### INTRODUCTION Mathematical model is a means of translating real life situations into mathematical symbols and relations. This concept is commonly used in Sciences and Engineering. Models are developed to help in understanding of physical phenomena. These models frequently resulted in equations that contain derivatives of unknown function of one or several variables. These types of equations are referred to as Differential Equations. Differential equations are not only encountered in physical sciences, but also in diverse fields like Economics, Medicine, Psychology, and Operation Research and even in areas such as Biology and Anthropology. In reality, the analytical solutions of some of the equations arising from modelling of real life situations might not be easily obtained. This necessitated the need for approximate solution by the application of numerical methods. To that extent, several algorithms have been proposed in literature based on the nature and the type of the differential equations to be solved such as Wambecq (1976), Jain (2003), Davis (2013), Qureshi et al. (2013), Fadugba and Falodun (2017), Fadugba and Okunlola (2017), just to mention a few. This paper is motivated by the work of Qureshi and Fadugba (2018). In this paper, the order of convergence, consistency and stability properties of the FadugbaFalodun and Fadugba-Okunlola schemes were investigated. The TOOSS and SOOSS have been applied on IVPs of first and second order ODEs (Fadugba and Ajayi, 2017; Qureshi and Fadugba, 2018; Fadugba, 2019; Fadugba, 2020). Thus, #### **Order of convergence of TOOSS** (2) $(x, y) \square$ ©2023 Noiand Journals 2! 3! 3! 4! **(1)** Fadugba and Okunlola (2017) derived a scheme of the form: $yn \Box 1 \Box \overline{y}n \Box 81 (e2h \Box 1) f(2) (xn, -yn) \Box h \Box \Box \Box f(xn, yn) \Box 14 f(2) (xn, yn) \Box \Box$ \Box $h2 \Box f(1) (xn, -yn) \Box 1 f(2) (xn, yn) \Box \Box \Box$ 2 (2) Using Equations 1 and 2, the local truncation error becomes: $LTE(TOOSS) \square y(x_n \square h) \square y_{n\square 1}$ $1^2 f^{(1)}(x_n, y(x_n)) LTE(TOOSS) \square y(x_n) \square hf(x_n, y(x_n)) \square h 2$ $1^3 f^{(2)}(x_n, y(x_n)) - 1 h^4 f^{(3)}(x_n, y(x_n)) \square O(h^5)$ $\Box h$ 4! 3! $yn \Box \Box 1 (e2h \Box 1) f(2) (xn, yn) - \Box h \Box \Box f(xn, yn) \Box 1 f(2) (xn, yn) \Box \Box$ _ 8 4 $h2 \square \square f(1) - (xn, yn) \square 1 f(2) (xn, yn) \square \square$ 2 🗆 2 Replacing the term e^{2h} in Equation 4 by its Maclaurin's series given by Under the local assumptions, the terms up to h^3 have been cancelled, then Equation 7 becomes: $$LTE(TOOSS) \square 121 h^{4} \square_{\square} \square^{1} 2 f^{(3)}(x_n, y(x_n)) \square f^{(2)}(x_n, y(x_n))^{\square} \square \square O(h^5)$$ Hence, the TOOSS has the convergence of third order. ### **Order of convergence of SOOSS** The Taylor's series expression for y(x) in powers of h is given by: | Original Article | |---| | (9) | | Fadugba and Falodun (2017) derived a scheme of the form: | | $y_{n\Box 1}\Box y_n\Box h(f(x_n,y_n)\Box f^{(1)}(x_n,y_n))\Box (e^{\Box h}\Box 1)f^{(1)}(x_n,y_n)$ | | | | (10) | | The local truncation error is given by | | $LTE(SOOSS) \Box y(x_n \Box h) \Box y_{n \Box 1}$ (11) | | Using Equations 9 and 10, Equation 11 becomes: | | | | $LTE(SOOSS) \square y(x_n) \square hf(x_n, y(x_n)) \square 1 h^2 f^{(1)}(x_n, y(x_n)) \square 1 h^3 f^{(2)}(x_n, y(x_n)) \square O(h^4)$ (12) | | 2 3! | | $\square\square y_n\squareh(f(x_n,y_n)\squaref^{(1)}(x_n,y_n))\square(e^{\square h}\square1)f^{(1)}(x_n,y_n)^\square$ | | Using the Maclaurin's series expansion of $e^{\Box h}$ and simplifying the Equation 12 under the localizing assumption, | | one gets: | | | | $LTE(SOOSS) \square _h3 \square f(1) (xn, yn)) \square f(2) (xn, yn) \square \square O(h4)$ (13) 3! | | Hence, SOOSS has the convergence of second order. | | Remark | | The analysis of local truncation error indeed determines the order of convergence for any numerical technique | | | | designed to solve IVPs in ODEs. | | CONSISTENCY PROPERTIES OF THE SCHEMES | | It is a known fact that any numerical method having an order of accuracy greater than or equal to 1 is considered | | to be consistent. In other words, a numerical integration method is said to be consistent if it has at least order p | | =1. | | Consistency analysis of TOOSS | | Among many, one of the ways to analyze the consistency of a numerical technique is to check that whether | | (Qureshi and Fadugba, 2018): | | $LTE(TOOSS) \square \qquad \square \square 121 \ h4 \square \square 12 f(3) (xn, y(xn)) \square f(2) (xn, y(xn)) \square \square \square \square O(h5) \square \square \square \square 0 $ (14) | | | | \square \square $\lim_h \overline{\square_0} \square$ \square \square \square $\lim_h \square_0 \square$ \square \square | | | | | | From Equation 14, it is observed that TOOSS has consistency characteristics. | | Consistency analysis of SOOSS | | Following the same procedures as that of the Qureshi and Fadugba (2018), one obtains that: | | $\underline{\Box LTE(SOOSS)} \Box \qquad \Box 3^{1}!h^{3}\Box f^{(2)}(x_{n},y(x_{n})) \Box f^{(1)}(x_{n},y(x_{n})) \Box \Box O(h^{4}) \Box \Box \Box O \qquad (15)$ | $h \qquad \qquad \Box \Box = \lim_h \Box_0 \Box \Box$ $h \square_{\square}$ $\lim_{h}\Box_{0}$ | Original Article | | |---|-----| | | | | From Equation 15, it is observed that SOOSS has consistency characteristics. Remark | | | For a numerical technique to be consistent, it is important for the truncation errors to be zero when the step si | ize | | h gets smaller and ultimately reaches to zero. | | | STABILITY ANALYSES OF THE SCHEMES | | | A numerical integration method is said to be stable if it is capable of damping out the small fluctuations carri | | | out in the input data. A one step explicit numerical integration method is reserved to be stable if a sm | | | perturbation in the initial conditions of the IVP leads to a small perturbation in the following numeric | cai | | approximation. | | | Stability analysis of TOOSS For the stability analysis of TOOSS, one of the popular ways is to apply the scheme to the Dahlquist's to | est | | equation: | CSt | | $\Box(x) \Box \Box y(x), y(0) \Box 1, \Box \Box 0 \tag{16}$ | | | whose exact solution is given by | | | $y(x)\Box \exp(\Box x)$ | | | (17) | | | where $\Box \Box 0$ is, in general, a constant. For an integration interval[$x_n, x_{n \Box 1}$], where | | | $h \square x_{n\square 1} \square x_n \tag{18}$ | | | The exact solution at the point | | | $x\square x_{n\square 1}$ | | | (19) | | | is obtained as | | | $y(x_{n\Box 1}) \Box \exp(\Box x_{n\Box 1}) \Box y(x_n) \exp(\Box h)$ | | | (20) | | | The numerical approximation obtained using TOOSS gives $yn \Box 1 \Box \Box \Box \Box \Box h \Box (\Box 2h!) 2 \Box (\Box 3h!) 3 \Box \Box yn$ (21) | | | | | | Setting | | | $A \square 1 \square \square h \sqsubseteq (\square h)^2 \sqsubseteq (\square h)^3 \tag{22}$ | | | | | ©2023 Noland Journals 3! 2! Equation 21 becomes Afr. J. Math. Comput. Sci. Res. Figure 1. The stability region (unshaded) of TOOSS. Comparison of Equations 20 and 23 shows that the factor A is merely an approximation for the factor $\exp(\Box h)$ in the exact solution. Truly, the factor A is the four-term approximation for the Maclaurin's series for $\exp(\Box h)$ for small $\Box h$. The error growth factor A can be controlled by $A \Box 1$ so that the errors may not magnify. Thus, the stability of TOOSS requires that Using Equation 24, the stability region is plotted in Figure 1. Hence, TOOSS is found to be stable in Figure 1. #### Stability analysis of SOOSS To discuss the stability analysis of SOOSS, consider the following Dahlquist's test equation of the form: $$y \square (x) \square \square y(x), y(0) \square 1, \square \square 0$$ (25) The exact solution of Equation 25 is given by $$y(x) \square \exp(\square x)$$ (26) For an integration interval $[x_n, x_{n-1}]$, where $h \square x_{n-1} \square x_n$ and following the procedures of Qureshi and Fadugba (2018); the exact solution at the point $x \square x_{n \square 1}$ is obtained as: $$y(x_{n \square 1}) \square y(x_n) \exp(\square h)$$ (27) When applied SOOSS on this test problem, one gets: $$y_{n\Box 1} \Box B y_n \tag{28}$$ where $$B \Box 1 \Box \Box h \Box \underline{\qquad} (\Box^{h)2} \tag{29}$$ 2! Comparing Equations 27 and 28, it is clearly seen that Equation 28 is a three-term approximation for the function $e^{\Box h}$ in the exact solution. The error growth factor given by Equation 28 can be controlled by $B \square 1$ so that the errors may not amplify. Thus, the stability function of SOOSS requires that: $$\begin{vmatrix} (\Box h)^2 \\ 1 \Box \Box h \Box \Box \bot \end{vmatrix}$$ 2! Setting $z \square \square h$ $$z \square \square h$$ (31) Therefore, Equation 30 becomes: $$\begin{vmatrix} z2 \\ 1 \Box z \Box \Box \end{vmatrix}$$ (32) The region of absolute stability for SOOSS is defined by the region in the complex plane such that $$1 \oplus z \Box \Box 1$$. The stability region is plotted in 2! Figure 2. #### Remark The notion of stability may be taken in different contexts: it may be associated with the specific numerical technique used, or the step size h used in numerical computations or with the particular problem being solved. #### NUMERICAL EXAMPLES AND DISCUSSION Here presents the implementation of the two schemes on IVPs of stiff differential equations. The discussion of results is also presented. All the calculations were carried out via MATLAB R2014a, Version: 8.3.0.552, 32 bit (win 32) in double precision. Figure 2. The stability region (unshaded) of SOOSS. #### Example 1 $$y \square \square \square 100(y \square x) \square 1, y(0) \square 1, x \square [0,0.1], y(x) \square \exp(\square 100x) \square x$$ # Example 2 $$y \square \square \square 20y \square 24, y(0) \square 0, x \square [0,0.1], y(x) \square \frac{6}{5} (1 \square \exp(\square 20x))$$ #### Example 3 $$y \square \square \square 10(y \square x)^2, y(0) \square 2, x \square [0,0.1], y(x) \square 1 \square \overline{10x+1}$$ The final absolute relative errors at x = b defined by FABRE = $|y(b)| |y_N|$ generated via SOOSS and TOOSS for Examples 1 to 3 are shown in Tables 1 to 3, respectively. The plots of the Tables 1 to 3 were displayed in Figures 3 to 5, respectively. It is observed from Tables 1 to 3 that both SOOSS and TOOSS perform excellently and yield smaller error for every decreasing step length, h. It is also observed from Tables 1 to 3 that the order of accuracy of SOOSS and TOOSS have been confirmed when applied to stiff differential equations taking the step length h having a first order decrease in its magnitude, that is $h = 10^{-2}$, 10^{-3} , Fadugba 5 **Table 1.** The FABRE via SOOSS and TOOSS for Example 1. 10-4, 10-5, 10-6. It is clearly seen in Tables 1 to 3 for every decrease in h, there are second order and third-order decrease in the magnitude of the computed FABRE via SOOSS and TOOSS, respectively. It is observed from the Figures 3 to 5 that the FABREs generated via SOOSS are greater than that of the TOOSS. | h | SOOSS | TOOSS | |------|------------|------------| | 10-2 | 0.00089917 | 0.00002888 | | 10-3 | 0.00000081 | 0.00000002 | | 10-4 | 0.00000001 | 0.00000000 | | 10-5 | 0.00000000 | 0.00000000 | | 10-6 | 0.00000000 | 0.00000000 | Table 2. The FABRE via SOOSS and TOOSS for Example 2. | h | SOOSS | TOOSS | |------|------------|------------| | 10-2 | 0.00240159 | 0.00014029 | | 10-3 | 0.00002088 | 0.00000012 | | 10-4 | 0.00000021 | 0.00000000 | | 10-5 | 0.00000000 | 0.00000000 | | 10-6 | 0.00000000 | 0.00000000 | **Table 3.** The FABRE via SOOSS and TOOSS for Example 3. | h | SOOSS | TOOSS | |------|------------|------------| | 10-2 | 0.00139160 | 0.00012157 | | 10-3 | 0.00001210 | 0.00000010 | | 10-4 | 0.00000012 | 0.00000000 | | 10-5 | 0.00000000 | 0.00000000 | |------|------------|------------| | 10-6 | 0.00000000 | 0.00000000 | #### Conclusion In this paper, notes on the order of convergence, consistency and stability properties of TOOSS and SOOSS have been successfully presented. It is observed that TOOSS and SOOSS have the convergence of third order and second order, respectively. From the analysis, it is observed that the two methods are convergent, consistent since they have order of accuracy greater than 1. It is also observed that TOOSS and SOOSS are stable as shown in Figures 1 and 2, respectively. Hence, it can be concluded from the numerical results that TOOSS performs better than SOOSS since it has a higher order of accuracy. Figure 3. The plot of the FABRE generated via SOOSS and TOOSS using Table 1. Figure 4. The plot of the FABRE generated via SOOSS and TOOSS using Table 2. **Figure 5.** The plot of the FABRE generated via SOOSS and TOOSS using Table 3. **CONFLICT OF INTERESTS** The author has not declared any conflict of interests. #### REFERENCES - Davis ME (2013). Numerical methods and modeling for chemical engineers. Courier Corporation. - Fadugba SE (2019). Numerical technique via interpolating function for solving second order ordinary differential equations. Journal of Mathematics and Statistics 1(2):1-6. - Fadugba SE (2020). Development of an improved numerical integration method via the transcendental function of exponential form. Journal of Interdisciplinary Mathematics 23(7):1347-1356. DOI: 10.1080/09720502.2020.1747196,. - Fadugba SE, Ajayi AO (2017). Comparative study of a new scheme and some existing methods for the solution of initial value problems in ordinary differential equations. International Journal of Engineering and Future Technology 14(3):47-56. - Fadugba SE, Okunlola JT (2017). Performance measure of a new onestep numerical technique via interpolating function for the solution of initial value problem of first order differential equation. World Scientific News 90:77-87. - Fadugba SE, Falodun BO(2017). Development of a new one-step scheme for the solution of initial value problem (IVP) in ordinary differential equations. International Journal of Theoretical and Applied Mathematics 3(2):58-63. - Jain MK (2003). Numerical methods for scientific and engineering computation. New Age International. - Qureshi S, Fadugba SE (2018). Convergence of a numerical technique via interpolating function to approximate physical dynamical systems. Journal of Advanced Physics 7(3):446-450. - Qureshi S, Shaikh AA, Chandio MS (2013). A new iterative integrator for Cauchy problems, Sindh University Research Journal-SURJ (Science Series) 45(3). - Wambecq A (1976). Nonlinear methods in solving ordinary differential equations, Journal of Computational and Applied Mathematics 2(1):27-33.