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INTRODUCTION 

Mathematical model is a means of translating real life situations into mathematical symbols and relations. This 

concept is commonly used in Sciences and Engineering. Models are developed to help in understanding of 

physical phenomena. These models frequently resulted in equations that contain derivatives of unknown function 

of one or several variables. These types of equations are referred to as Differential Equations. Differential 

equations are not only encountered in physical sciences, but also in diverse fields like Economics, Medicine, 
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Psychology, and Operation Research and even in areas such as Biology and Anthropology. In reality, the 

analytical solutions of some of the equations arising from modelling of real life situations might not be easily 

obtained.  This necessitated the need for approximate solution by the application of numerical methods. To that 

extent, several algorithms have been proposed in literature based on the nature and the type of the differential 

equations to be solved such as Wambecq (1976), Jain (2003), Davis (2013), Qureshi et al. (2013), Fadugba and 

Falodun (2017), Fadugba and Okunlola (2017), just to mention a few. This paper is motivated by the work of 

Qureshi and Fadugba (2018). In this paper, the order of convergence, consistency and stability properties of the 

FadugbaFalodun and Fadugba-Okunlola schemes were investigated. The TOOSS and SOOSS have been applied 

on IVPs of first and second order ODEs (Fadugba and Ajayi, 2017; Qureshi and Fadugba, 2018; Fadugba, 2019;   

Fadugba, 2020).   

Therefore, Equation 4 becomes:  

LTE(TOOSS) y(xn) hf (xn, y(xn))
1 h1 f (1) (xn, y(xn)) 

ORDER OF CONVERGENCE OF THE SCHEMES   

1 3 f (2) (xn, y(xn)) 1 h4 f2(3) (xn, y(xn)) O(h5 )      

 h 

In order to check the order of convergence of the  3! 4! 

schemes, the formula of the schemes is subtracted from the Taylor's series expansion for y(x) in powers of h 

 yn 18 1 2h (22h!)2 (23h!)3 (24h!)4 ... 1 f (2) (xn, yn) 

under the localizing assumptions. The convergence of  h f (x , y )1 f (2) (x , y ) h2 f (1) (x , y )1 f 

(2) (x , y )  Thus,  

Order of convergence of TOOSS    

  LTE(TOOSS) y(xn) hf (xn, y(xn)) 
1 h2 f (1) (xn, y(xn))                     

From the Taylor’s series, one obtains:  2 

 1 3(2) 1 4(3) 5 

 3!h f (xn, y(xn)) 4!h f(xn, y(xn)) O(h ) 

12 2 y (xn ) 31!h3 y (xn ) 41!h3 yiv (xn ) O(h5 )                               yn 
hf         (xn, yn) h2

2 f (1) (xn, yn) h3!
3 f (2) (xn, yn) 12h

4 f (2) (xn, yn) y(xn h) y(xn ) hy (xn ) h 

 1 2 (1) 

y(xn ) hf (xn , y(xn ))  h f (xn , y(xn )) 2 

1 
3 (2) 1 4 (3) 5 

  h f (xn , y(xn ))  h f (xn , y(xn )) O(h ) 

                                                      
1 h 1 2h (2h)2 (2h)3 (2h)4 ...             (5) e  

 2! 3! 4! 
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 3! 4! 

         (1)  

 Fadugba and Okunlola (2017) derived a scheme of the form:  

 yn 1 yn 81 (e2h 1) f (2) (xn, yn) h f (xn, yn) 14 f (2) (xn, yn)    

h2 f (1) (xn, yn) 1 f (2) (xn, yn)  

2  2  

                                                (2)  

 Using Equations 1 and 2, the local truncation error becomes:  

 LTE(TOOSS) y(xn h) yn 1         

                                      (3)  

 1 2 f (1) (xn, y(xn)) LTE(TOOSS) y(xn) hf (xn, y(xn)) h 2 

 13 f (2) (xn, y(xn)) 1 h4 f (3) (xn, y(xn)) O(h5 )      

h 

 3! 4! 

 yn 1 (e2h 1) f (2) (xn, yn) h f (xn, yn) 1 f (2) (xn, yn)  

 8  4  

 h2 f (1) (xn, yn) 1 f (2) (xn, yn)  

 2  2  

                                                                (4)  

Replacing the term e2h in Equation 4 by its Maclaurin’s series given by   

               (7)  

 Under the local assumptions, the terms up to h3 have been cancelled, then Equation 7 becomes:  

 LTE(TOOSS) 121 h4 12 f (3) (xn, y(xn)) f (2) (xn, y(xn)) O(h5 ) 

                                                        (8)  

 Hence, the TOOSS has the convergence of third order.  

  Order of convergence of SOOSS  

 The Taylor’s series expression for y(x) in powers of h is given by:  

  2 1 3 4 y(xn h) y(xn) hy (xn)  h y (xn)  h y (xn) O(h ) 

1 3!                  

1 
2 (1) 1 3 (2) 4 

 y(xn) hf (xn, y(xn))  h f(xn, y(xn))  h f (xn, y(xn)) O(h ) 

2 3! 
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                   (9)  

 Fadugba and Falodun (2017) derived a scheme of the form:  

  yn 1 yn h( f (xn, yn) f (1) (xn, yn)) (e h 1) f (1) (xn, yn)                    

                                                                                     (10)  

 The local truncation error is given by   

 LTE(SOOSS) y(xn h) yn 1                     (11)                

 Using Equations 9 and 10, Equation 11 becomes:  

 LTE(SOOSS) y(xn) hf (xn, y(xn)) 1 h2 f (1) (xn, y(xn)) 1 h3 f (2) (xn, y(xn)) O(h4 ) (12)  

 2 3! 

yn h( f (xn, yn) f (1) (xn, yn)) (e h 1) f (1) (xn, yn)
   

   Using the Maclaurin’s series expansion of e h and simplifying the Equation 12 under the localizing assumption, 

one gets:  

 LTE(SOOSS) h3 f (1) (xn, yn)) f (2) (xn, yn) O(h4 )    (13) 3! 

 Hence, SOOSS has the convergence of second order.  

  Remark   

 The analysis of local truncation error indeed determines the order of convergence for any numerical technique 

designed to solve IVPs in ODEs.  

  CONSISTENCY PROPERTIES OF THE SCHEMES  

 It is a known fact that any numerical method having an order of accuracy greater than or equal to 1 is considered 

to be consistent. In other words, a numerical integration method is said to be consistent if it has at least order p 

=1.  

  Consistency analysis of TOOSS  

 Among many, one of the ways to analyze the consistency of a numerical technique is to check that whether 

(Qureshi and Fadugba, 2018):  

  LTE(TOOSS)  121 h4 12 f (3) (xn, y(xn)) f (2) (xn, y(xn)) O(h5 ) 0     (14)  

 limh 0 h limh 0 h  

   

   

 From Equation 14, it is observed that TOOSS has consistency characteristics.  

  Consistency analysis of SOOSS  

 Following the same procedures as that of the Qureshi and Fadugba (2018), one obtains that:  

  LTE(SOOSS)  31!h3 f (2) (xn, y(xn)) f (1) (xn, y(xn)) O(h4 ) 0     (15)  

 

limh 0  h limh 0  h  
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From Equation 15, it is observed that SOOSS has consistency characteristics.  

Remark   

For a numerical technique to be consistent, it is important for the truncation errors to be zero when the step size 

h gets smaller and ultimately reaches to zero.  

STABILITY ANALYSES OF THE SCHEMES  

A numerical integration method is said to be stable if it is capable of damping out the small fluctuations carried 

out in the input data. A one step explicit numerical integration method is reserved to be stable if a small 

perturbation in the initial conditions of the IVP leads to a small perturbation in the following numerical 

approximation.  

Stability analysis of TOOSS  

For the stability analysis of TOOSS, one of the popular ways is to apply the scheme to the Dahlquist’s test 

equation:  

 (x) y(x), y(0) 1, 0    

  

whose exact solution is given by  

  

         (16)  

y(x) exp( x)                           

(17)  

 where 0is, in general, a constant. For an integration interval[xn,xn 1], where   

 h xn 1 xn                              (18)  

 The exact solution at the point   

  

x xn 1             

  

is obtained as  

  

       

(19)  

y(xn 1) exp( xn 1) y(xn)exp( h)            

(20)  

 The numerical approximation obtained using TOOSS gives  

 yn 1 1 h ( 2h!)2 ( 3h!)3 yn             (21)  

 

 Setting   

 A 1 h ( h)2 ( h)3                           (22)  

 2! 3! 

 Equation 21 becomes  
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 yn 1 Ayn                  (23) 4         Afr. J. Math. Comput. Sci. Res. 

      
Figure 1. The stability region (unshaded) of TOOSS.  

   Comparison of Equations 20 and 23 shows that the factor A is merely an approximation for the factor exp( h)in 

the exact solution. Truly, the factor A is the four-term approximation for the Maclaurin's series for exp( h) for 

small h . The error growth factor A can be controlled by A 1so that the errors may not magnify. Thus, the 

stability of TOOSS requires that  

 z2 z3 A 1 z  1, z h             (24) 2! 3! 

  

Using Equation 24, the stability region is plotted in Figure 1. Hence, TOOSS is found to be stable in Figure 1.  

  Stability analysis of SOOSS  

 To discuss the stability analysis of SOOSS, consider the following Dahlquist's test equation of the form:  

 y (x) y(x), y(0) 1, 0                         (25)  

 The exact solution of Equation 25 is given by  

 y(x) exp( x)                 (26)  

 For an integration interval[xn,xn 1], where h xn 1 xn  and following the procedures of Qureshi and Fadugba  

(2018);  the   exact   solution   at   the   point  x xn 1  is obtained as:  

 y(xn 1) y(xn)exp( h)                 (27)  

 When applied SOOSS on this test problem, one gets:  

 yn 1 Byn                   (28)  

 where  

 B 1 h ( h)2                 (29)  

2! 
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 Comparing Equations 27 and 28, it is clearly seen that  

Equation 28 is a three-term approximation for the function e h in the exact solution. The error growth factor given 

by Equation 28 can be controlled by B 1so that the errors may not amplify. Thus, the stability function of SOOSS 

requires that:  

 ( h)2 

1 h 1                   (30)  

2! 

 Setting  

 z h                    (31)  

 Therefore, Equation 30 becomes:  

 z2 

1 z 1                 (32)  

2! 

The region of absolute stability for SOOSS is defined by the region in the complex plane such  

z2 

that1 z 1. The stability region is plotted in 2! 

Figure 2.  

  Remark   

 The notion of stability may be taken in different contexts: it may be associated with the specific numerical 

technique used, or the step size h used in numerical computations or with the particular problem being solved.  

  NUMERICAL EXAMPLES AND DISCUSSION  

 Here presents the implementation of the two schemes on IVPs  of  stiff  differential   equations.  The   discussion 

of    results is also presented. All the calculations were carried out via MATLAB R2014a, Version: 8.3.0.552, 32 

bit (win 32) in double precision. 

   

Figure 2. The stability region (unshaded) of SOOSS.  

 Example 1  

 y 100(y x) 1, y(0) 1, x [0,0.1], y(x) exp( 100x) x  
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  Example 2  

 y 20y 24, y(0) 0, x [0,0.1], y(x)  (1 exp( 20x))  

  Example 3  

 y 10(y x)2, y(0) 2, x [0,0.1], y(x) 1   

 The final absolute relative errors at x = b defined by  

FABRE = y(b) yN  generated via SOOSS and  

TOOSS for Examples 1 to 3 are shown in Tables 1 to 3, respectively. The plots of the Tables 1 to 3 were displayed 

in Figures 3 to 5, respectively.  

It is observed from Tables 1 to 3 that both SOOSS and TOOSS perform excellently and yield smaller error for 

every decreasing step length, h. It is also observed from Tables 1 to 3 that the order of accuracy of SOOSS and 

TOOSS have been confirmed when applied to stiff differential equations taking the step length h having a first 

order decrease in its magnitude, that is  h =10-2, 10-3,  Fadugba           5 

   Table 1. The FABRE via SOOSS and TOOSS for Example 1.   10-4, 10-5, 10-6. It is clearly seen in Tables 1 to 

3 for every decrease in h, there are second order and third-order decrease in the magnitude of the computed 

FABRE via SOOSS and TOOSS, respectively. It is observed from the Figures 3 to 5 that the FABREs generated 

via SOOSS are greater than that of the TOOSS. 

 h  SOOSS  TOOSS  

10-2  0.00089917  0.00002888  

10-3  0.00000081  0.00000002  

10-4  0.00000001  0.00000000  

10-5  0.00000000  0.00000000  

10-6  0.00000000  0.00000000  

   Table 2. The FABRE via SOOSS and TOOSS for Example 2.  

 h  SOOSS  TOOSS  

10-2  0.00240159  0.00014029  

10-3  0.00002088  0.00000012  

10-4  0.00000021  0.00000000  

10-5  0.00000000  0.00000000  

10-6  0.00000000  0.00000000  

   Table 3. The FABRE via SOOSS and TOOSS for Example 3.  

 h  SOOSS  TOOSS  

10-2  0.00139160  0.00012157  

10-3  0.00001210  0.00000010  

10-4  0.00000012  0.00000000  
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10-5  0.00000000  0.00000000  

10-6  0.00000000  0.00000000  

 Conclusion  

 In this paper, notes on the order of convergence, consistency and stability properties of TOOSS and SOOSS have 

been successfully presented. It is observed that TOOSS and SOOSS have the convergence of third order and 

second order, respectively. From the analysis, it is observed that the two methods are convergent, consistent since 

they have order of accuracy greater than 1. It is also observed that TOOSS and SOOSS are stable as shown in 

Figures 1 and 2, respectively. Hence, it can be concluded from the numerical results that TOOSS performs better 

than SOOSS since it has a higher order of accuracy.  

 

Figure 3. The plot of the FABRE generated via SOOSS and TOOSS using Table 1.  
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Figure 4. The plot of the FABRE generated via SOOSS and TOOSS using Table 2.  

 

Figure 5. The plot of the FABRE generated via SOOSS and TOOSS using Table 3.  
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