International Journal of Intelligent Systems and Computing, Volume 10(1), 2022 | ISSN: 2997-0849

Original Article

REVEALING THE LIMITING CHARACTERISTICS OF REGIONAL COMPOSITE
QUANTILE REGRESSION WITHIN DIFFUSION MODELS

Li Wei
Abstract: This paper introduces a novel approach for parameter
Department of Applied Mathematics, Fudan estimation within the context of diffusion models. While
University, Shanghai, China composite quantile regression (CQR) has been applied effectively
in classical linear regression models and more recently in general
non-parametric regression models, its application in diffusion
models has been limited. This research bridges this gap by
extending CQR to estimate regression coefficients in diffusion
models.
The diffusion model is considered within the framework of a
filtered probability space (Q, F, (Ft)t>0, P), represented as:
dXt = B(t)b(Xt)dt + o(Xt)dWt, where P(t) represents a time-
dependent drift function, Wt is the standard Brownian motion, and
b(’) and o(") are known functions. Notably, Model (1.1)
encompasses several well-known option pricing and interest rate
term structure models, including Black and Scholes (1973),
Vasicek (1977), Ho and Lee (1986), and Black, Derman, and Toy
(1990), among others.
This study extends the applicability of CQR to diffusion models,
offering a powerful tool for estimating regression coefficients in
this context. It fills a significant research gap, providing a
promising avenue for enhanced parameter estimation in the field
of diffusion models.
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1. Introduction
Composite quantile regression (CQR) is proposed by Zou and Yuan (2008) for estimating regression coefficients
in classical linear regression models. More recently, Kai el.(2010) considers a general non-parametric regression
models by using CQR method. However, to our knowledge, little literature has researched parameter estimation
by CQR in diffusion models. This motivates us to consider estimating regression coefficients under the framework
of diffusion models. In this paper, we consider the diffusion model on a filtered probability space ([J,F,(Ft)t[10,P)
(1.1) dXeODO(E)b(X ¢)dt OO(X ¢)dW,
()  W!'is the standard Brownian motion. b(J) and(J([J) are known
where is a time-dependent drift function and functions. Model (1.1) includes many famous option pricing models
and interest rate term structure models, such as Black and Scholes(1973), Vasicek(1977), Ho and Lee(1986),
Black, Derman and Toy (1990) and so on.
(t)
We allow being smooth in time. The techniques that we employ here are based on local linear fitting (see Fan and
Gijbels(1996)) for the time-dependent parameter. The rest of this paper is organized as follows. In Section 2, we
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propose the local linear composite quantile regression estimation for the drift parameter and study its asymptotic
properties. The asymptotic relative efficiency of the local estimation with respect to local least squares estimation
is discussed in Section 3. The proof of result is given in Section 4.

2. Local estimation of the time-dependent parameter

{X"iD12,0n013tt 0000t Denote

Let the data  be equally sampled at discrete time points,

Yti [0 Xtidl O X ti 0t OWtiO1 OWti, and i 0 tifd)1 [Jti.Due to the independent increment property of
Brownian motion

WU are independent and normally distributed with mean zero and variance®". Thus, the discretized version of
the model (1.1) can be expressed as

(2.1)  YaO OC)b( X a)0i DO ) Uiz,

A 1/ [0 ' . The first-order discretized

where are independent and normally distributed with mean zero and variance approximation error to the
continuous-time model is extremely small according to the findings in Stanton (1997) and Fan and Zhang(2003),
this simplifies the estimation procedure.

Suppose the drift parameter [1(t) to be twice continuously differentiable in t. We can take "'® to be local

t 9, we use the approximation linear fitting. That is, for a given time point

(2.2) 0(t) D(to) D' (to)(t Uto)

fort in a small neighborhood of . Let " denote the size of the neighborhood and X(") be a nonnegative weighted
function. "and X are the bandwidth parameter and kernel function, respectively. Denoting "°=-) and
TLITM0) (2.2) can be expressed as

(2.3) (t) Do O 0g(t Oto) .

()

Now we propose the local linear CQR estimation of the  drift parameter
Let

k

Ok=___

00k (r) ODOkr OOro0},k O01,2,00, ,which are g check loss functions at q quantile positions: g [J 1. Thus,
(1)
following the local CQR technique, can be estimated via minimizing the locally weighted CQR loss

q n Yt 01

2.4) 0 {00.«{ [b(Xti)] O Dok O D1 (ti Cto) }Kn(ti Cto )}

ti (It 0) Kh (ti 0t0 )=K( where " and " is a properly selected bandwidth. Denote the minimizer of the locally
weighted

(0°01,0702,1,0°0, 01" )T

CQRloss (2.4) by . Then, we let

q
(2.5) O'(to) 0 100" o

q ko1

1ol io1 i
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We refer to [17(t0 ) as the local linear CQR estimation of (1(t0 ) , for a given time point t 0 . To obtain the
0°(0)

estimated function  , we usually evaluate the estimations at hundreds of grid points.

In order to discuss the asymptotic properties of the estimation, we introduce the following assumptions.
Throughout this paper, ™ denotes a positive generic constant independent of all other variables.

b(L) L()

(Al) The functions and in model (1.1) are continuous.

K (1)

(A2) The kernel function is a symmetric and Lipschitz continuous function with finite support
[OM,M]

h=h(n) 10 ™M,
(A3) The bandwidth and

F(O) f(0)

Let and be the cumulative density function and probability density function of the error, g([1)  [a,b]
respectively. denotes the density function of time, usually a uniform distribution on time interval
Define

O O 0u K (u)du, O 0 0u’K? (u)du, j01,2,0

and

1 q q 0 kk'
26) R(@ "2 00

qkO1l k'O1f(ck)f(ck")
ck O F-Y(Ok)and Okk '=0k DOk 000 kk ' . where

0'(t%)
Theorem 2.1 Under assumptions (A1)-(A3), for a given time point %, the local CQR estimation
from (2.5) satisfies,

(2.7) E[0(t) ] 00(to) 010" (o) 0122 Do(h?)
2

2
(2.8) Var[[1'(t)) ] 0 * . 00°(XY) R(g) Do(*) nhg(te)b (X 1o ) nh
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and,as"" ",
2
(2.9) nh{I (1) D0(to) 0} 0"(t))Ih? LN (0, =+ 00X ) R(9))

2 g(to)b (X0 )

[J - means convergence in distribution.

where

3. Asymptotic relative efficiency

We discuss the asymptotic relative efficiency(ARE) of the local linear CQR estimation with respect to the local
linear least squares estimation(see Fan and Gijbels(1996)) by comparing their mean-squared errors(MSE).From
[°(t°) . That is, theorem 2.1, we obtain the MSE

2

(3.1) MSE[[ (to) ] 0 [* 0"(to)(12)% [ 1—20[1 19 (XY R(q) Do(h*11)

2 nhgto)b (Xw ) nh

We obtain the optimal bandwidth via minimizing the MSE (3.1), denoted by

hopt (to) ] 0 [ DOQ2(Xt0)R(q) 115,51
;(to)b (2Xt0 0" (to) O2]

[(t°) , denoted by (15 (t°) , is The MSE of the local linear least squares estimation of

2
(3.2) MSE[Os(to)] O [FO"(to) 2?0t 0r° (XY do(h*O?1)

2

2 nhgto)b (Xo ) nh
and the optimal bandwidth is

0o2(X) 1 1, .
opt

o
o
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hLS@0)]0[2 2 ]n
g(to)bo (%0 )[[1"(to) [12]

i3y straightforward caIcuIatjons, we have, as""'/,
MSE[[s (o) ] O [R'(@)] 5

MSE[ ] (to) ]
Thus, the ARE of the local linear CQR estimation with respect to the local linear least squares estimation is

D 4
(3.3) ARE(('(to), 1 is(to)) 0 [R(Q)]

(3.3) reveals that the ARE depends only on the error distribution. The ARE we obtained is equal to that in Kai
el.(2010).

ARE(01'(t°),05 (t°)) for some commonly seen error distributions. Table 1 in Kai Table 3.1 displays el.(2010)
can be seen as ARE for more error distributions.
Table 3.1: Comparisons of ARE([1"(t0 ),[1"LS (t0 )) for the values of q

Error gl qbs qu9 qi19 g9
N(0,1) 0.6968 0.9339 0.96590.9858 0.9980
Laplace 1.7411 1.2199 1.1548 1.0960 1.0296
0.9N(0,1) [10.1N(0,10% ) | 4.0505 4.9128 4.70693.5444 1.1379

From Table 3.1, we can see that the local linear CQR estimation is more efficient than the local linear least squares

estimation when the error distribution is not standard normal distribution. When the error distribution is

N(0,1) and g [J 1,5,9,19,99 , the ARE([1"(t0 ),[1"LS (t0)) is very close to 1, which demonstrates that the local

linear

CQR estimation performs well when the error conforms to the standard normal distribution too.

4. Proof of result

1S11 S12 1]

SO0 O

In order to prove theorem 2.1, we first give some notations and lemmas. Let -s2b - S220 and

0011012 17

gout o

121 [0 2201, where S11 is a q[1q diagonal matrix with diagonal elements f (ck ),k [11,2,(1,9,

q

SOf(c)

S12 [J (01 f(cl),01f(c2),0,001f(cq))T, S21 [1S12T and 22 200kJ1 k. [1 11 is a qJg matrix with (k,k ") -

000k k' kk'01,2,0,g, 012 0 (010kg'D101k " ,010gk '0102k *,0,010kg'010gk )T 021=012
122 0 020ka,k 010Kk
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Furthermore, let 00 b(X0) 00 OhnhD0 D0 (t) O

10 tifon di, k Oi,k 0 Ouk OckO0O aori

O v/ (1 0b(Xti ) b(Xt0) 001 with ri O [J(ti ) OO0 ) 10" (t0 )(ti

and nh(J h 0 .Write t0) .

OO O(Xti) O(Xt0 ) [

Define i,k to be ti k i,k titi k . Let n 11 12 1q
1(qJ1) with

0 1;2%# 0 0,9 wl(OgOl)Oo1dogn Di% h(ti 0t0) ti Ot0
wilk O M,k Kh(ti (0t0),k 01,2,

nhifll, a nhkoliol " _

Lemma 4.1 Under assumption (A1)-(A3), minimizing (2.4) is equivalent to minimizing the following term:
q O n Oi*k Kh(ti 0t0)0) q n Oi* kKh(ti Ot0)(ti t0) g

La(0) O Duk D00 OVO DO 0Bk (D)

kOl 01010 kOl i01k0o1

00 10Z0c0d

0 0 0 0 oT
b(X)O(X)O O O W O (w,w,[,w,w) /
0107s 00 (We™ T 0p(2)

2
O=(u,u,0,u,0)
11 g with respect to , Where
[
Bnk 00DO0ION1 DOOOKh Ot Ot0 006,100 0100 ti k di i,b0OXti ti O zbOXttii OO0 -
100 ti k di,dbOXtiti 00000 0Odz0O OO0 Sn OOO0SSnn,, 1121 SSnn,,1222 [0 IO,
00 0Z0OcO
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O bOXd OO
Sn,11 OO0Kh Ot 0t0 O 01 00811 with 00 i01 nhJ Xt OO, Sn,21 (OSnT ,12,
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Sn,12 0000 Kh Ot 0t0 Ot (1t0 bOX (Oti (i OO 00f Ocl O, f Oe2 0,0, f Ocq OOT
0001 h nhi Xt 00

tq Ock O0On OOKhA Ot 0t0 O(ti [012t0)2 bOXOt O 00 O
Sn,22 [ f

and [ h nh Xt 0 0.

kOl 010

The proof of lemma 4.1 is similar to lemma 2 and lemma 3 in Kai el.(2010).
Proof of theorem 2.1

Using the results of Parzen(1962), we have

1n Ot 000 ]
OKh Oti 000 jOPgOt00ujnhidl h

[ P means convergence in probability. Thus,

where
gt b1 Xo [ gltolbOXn Sy [
00S1 0 S
Sn DP S D |:| ZZD

OOXt0 [0 OOXt0 O 1521

According to lemma 4.1, we have

LoOoooo gt oboX ©o0TsoOows 0o op 010

L"OODOOW™OTE converges in probability to the convex function Since the convex function
1 gt ObOXtO O T

0 SO

2 00X 0

0 , according to the convexity lemma in Pollard(1991), for any compact set, the quadratic
L0000 a

approximation to holds uniformly for . Thus, we have

" 00 got0 ObOX to [0 SCOIWN* Do p L1100
[In
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00Xt O

O .

Define Ui,k O 10zti Cck O OOk and Wn [ Owl1l,w12,00wlgwlqO100T with
wlk n Oi,kKh Oti 0t00,k 01,2,00,9 Wlmqéﬁg 01 0q On i,k Kh Oti 0t0 0 ti 0t

nhildl, and nhkO1iJ1 h
By using the central limit theorem and the Cramer-Wald theorem, we have

WN CE(WP
(4.1) (D) E;

L (q01)0(q01) Var(Wh)

Notice that Cov( ik, 'i,k') [ 'kk ' andCov([Jix,[Jj,k') [ O Ifi (I j . We have

1 n 2 (ti0w0)j
OKh (ti 0t0) j 0P g(to)vj. nhiil h

Var(W) [0 g(t)0. W 0 N(0,g(t)[1)

Thus, "°. Combining the result (4.1), we have "-°. Moreover, we have

1 n

* 2 *

Var(wlk COwilk) 00 OKh (ti Ot0)Var(Uik OOik )

nh 01

1 n 2 | di,k | b(Xti)

0 OKn (ti Dto)[F(ek ) OF(ck)] OOp (1) nhiidl  DO(Xti)
And

n q

* 1 2 tinto*
Var(wl(qO1) 0 wl(qr1)) O OKh (6 010) Var(DOik O0ik )

nhidlh ko1
02 n 2 tL 0t & dik | b(Xti )
0 OKn(tiOto)  maxe[F(ek 0 ) OF(ck)] O0p(1). nhicdl  h (Xt )
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*

Var(w"™ 0w") 0o P
Therefore, (1) . Using Slutsky's theorem yields wn (1L N (0, g(to ) [).

Thus,

0 (Xt0) 01 =* 12 (Xt) 01 01

[n 0 S E(Wn) DLN(O,————=—S [1§) g(to)b(Xt) g(to)b (Xt)
0 0

So the asymptotic bias of [1°(tO ) is:

bias((°(t0)) [ 1 (X10) a-ekt—=4340- eqTLSL)ILEWL *n) g b(Xt0) ki anh glto)b(Xo )

11 [J(Xt0) 9ck (Xt0) [Ki 191 JIF(ck [ di,kb(Xt0) ) [0 F(ck )1, g b(Xt0 ) k(11 g nh g(t0 )b(X
t0) i1 k1 f(ck) WO O(Xti) OO where

Ki [0 Kh(ti 0t0 ),eq11 (0 (1,1,00, 1)T and W1*n [J(wll* ,w12* . .wl*q)T .

q

c 00

z 1k , and

Note that ! is symmetric, thus ¥

L0 10 dybd) O (X )

0 OF@D )0 F(e)000 (L000p(L)). q kOILf (ck) (101 CI(Xt) (10 C(Xt)

Therefore,
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1 O(Xt0) n rbi (X ti) _
bias(( (to)) 00K (100p (L)). Since
nh g(t0 )b(X t0) i1 (X i)
" rb(X) g(t)0" (t)b(X)

1

OKi ipno o O, (100p (1)).  We have
nhif1 O(X ti) 20(X 10)

1

2

bias([1 (to)) 00" (to)J2h? Dop (h?). and

0%(X)
Var[["(t0)] 0 120 12 eqT02(SC101S011)11eq11 Dop( 1) nh g(to)b (X 0) g nh

01 . V002 (Xt) R(g) Dop(1). nh g(to)b (X0 ) nh

2

This completes the proof.
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