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I. INTRODUCTION inventive principles can inspire the model to explore multimodal AI models, capable of 

processing and unconventional solutions and generate novel ideas. Make more understanding information from 

multiple modalities robust and reliable decisions. TRIZ's problem-solving however, are often constrained by their 

reliance on single modality inputs, such as text, images, or audio. These such as text, images, and audio, have 
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made significant strides in recent years. However, these models often struggle with complex reasoning tasks that 

require understanding underlying relationships, identifying contradictions, and generating innovative solutions.   

TRIZ, a systematic innovation methodology, provides a powerful framework for problem-solving and creative 

thinking. By leveraging TRIZ principles, we can enhance the reasoning capabilities of multimodal AI models. 

TRIZ offers a structured approach to identifying contradictions, analyzing problem domains, and generating 

innovative solutions.   The paper proposes a novel approach to integrate TRIZ principles into multimodal AI 

models. By incorporating TRIZ-inspired techniques into the training and inference processes, we aim to improve 

the model's ability to understand and interpret complex multimodal data. TRIZ can help the model identify and 

resolve contradictions between different modalities, leading to a deeper understanding of the input data. Generate 

creative and innovative solutions. TRIZ's techniques can help the model identify potential issues and develop 

contingency plans, leading to more resilient decision-making. Let's discuss the specific techniques for integrating 

TRIZ principles into multimodal AI models, including TRIZ inspired loss functions. To guide the model towards 

TRIZ aligned solutions during training. TRIZ-based attention mechanisms. To focus on relevant information and 

identify potential contradictions. TRIZ-guided knowledge distillation. To transfer TRIZ knowledge from human 

experts to the model. Through empirical evaluation of various multimodal tasks, we demonstrate the effectiveness 

of our approach in enhancing the reasoning capabilities of AI models. Our work contributes to the advancement 

of AI research by providing a new perspective on combining symbolic and statistical reasoning. The rapid 

evolution of artificial intelligence (AI) has enabled systems to process and interpret vast amounts of data, driving 

advancements in diverse fields such as healthcare, autonomous systems, and multimedia analytics. Traditional AI 

models, Limitations restrict their capacity to perform complex reasoning tasks that require understanding and 

integrating information from multiple sources. Multimodal AI models offer a promising solution to these 

challenges by combining data from various modalities into a unified framework. This integration allows systems 

to uncover intricate patterns, contextualize information, and make informed decisions that reflect the complexities 

of real-world scenarios. While multimodal models excel at representation learning, their potential for reasoning—

drawing logical conclusions and inferring knowledge across modalities—remains an area of active research. The 

paper focuses on developing and evaluating a reasoning mechanism tailored for multimodal AI models. By 

leveraging the strengths of multimodal integration, the proposed mechanism aims to address key challenges in 

reasoning, including handling modality-specific contradictions, aligning heterogeneous data, and ensuring 

contextual consistency. The introduction of such mechanisms has the potential to transform how AI systems 

interact with and interpret complex environments. The objectives of this study are to design a reasoning 

architecture that effectively utilizes multimodal data; to demonstrate the application of this mechanism in various 

scenarios, including prediction, decision-making, and generative tasks and to evaluate the performance and 

adaptability of the proposed approach in comparison with traditional reasoning methods. Through this research, 

we aim to contribute to the growing body of work on multimodal AI, offering insights into how reasoning 

capabilities can enhance the utility and reliability of such models in real-world applications. The primary purpose 

of this paper is to enhance the reasoning capabilities of multimodal AI models by integrating TRIZ principles [1]. 

By leveraging TRIZ's systematic approach to problem-solving and innovation, we aim to improve the model's 

ability to understand and interpret complex multimodal data, enhance the model's creativity, and innovation and 

strengthen the model's decision-making capabilities. Let's explore techniques to help the model identify and 

resolve contradictions between different modalities, leading to a more comprehensive understanding of the input 

data. In this case, investigate how TRIZ's inventive principles can inspire the model to generate novel and 
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unconventional solutions to problems and examine how TRIZ's problem-solving techniques can help the model 

identify potential issues and develop robust decision-making strategies. Ultimately, this research seeks to advance 

the state-of-the-art in multimodal AI by equipping models with stronger reasoning abilities, enabling them to 

tackle more complex and challenging tasks. The purpose of this paper is to propose and evaluate a novel reasoning 

mechanism for multimodal artificial intelligence (AI) models, leveraging the principles of the Theory of Inventive 

Problem Solving (TRIZ). By integrating TRIZ principles, the study aims to address key challenges in multimodal 

reasoning, including modality alignment, contradiction resolution, and contextual consistency.  

II. LITERATURE REVIEW  

The field of multimodal artificial intelligence (AI) has gained significant attention in recent years, driven by the 

increasing availability of diverse data sources and the demand for systems that can understand and interpret 

complex environments [2]. This literature review explores the foundations of multimodal AI, existing approaches 

to reasoning in AI systems, and the challenges of integrating reasoning mechanisms into multimodal frameworks.  

1. Multimodal AI Models  

Multimodal AI aims to integrate information from multiple data modalities—such as text, images, and audio—

into a unified representation. Early research focused on bimodal systems, such as image-captioning models, which 

align visual and textual data [3]. Recent advances, including transformerbased architectures like CLIP [4] and 

FLAVA [5], have expanded multimodal capabilities, enabling systems to perform cross-modal retrieval, 

understanding, and generation tasks. While multimodal models excel at representation learning, their application 

in complex reasoning tasks remains limited. Most models focus on feature extraction and cross-modal alignment, 

often lacking mechanisms for drawing logical inferences or resolving conflicts between modalities.  

2. Reasoning in AI Systems  

Reasoning, a core component of human intelligence, involves the ability to infer, deduce, and make decisions 

based on available information. In AI, reasoning approaches can be broadly categorized as follows:  

Symbolic Reasoning. Relies on explicit rules and logical frameworks (e.g., expert systems) [6]. While 

interpretable, these systems struggle with ambiguity and scale. Statistical Reasoning. Utilizes probabilistic models 

to infer relationships between variables. Commonly applied in Bayesian networks and machine learning models, 

this approach excels in uncertainty but often lacks interpretability [7]. Neuro-symbolic Reasoning. Combines 

neural networks with symbolic frameworks to leverage the strengths of both paradigms [8]. This hybrid approach 

is gaining traction, especially for tasks requiring both perception and logic. Multimodal reasoning introduces 

additional complexity due to the need to reconcile diverse data types and their unique characteristics.  

3. Challenges in Multimodal Reasoning  

Several challenges arise when incorporating reasoning mechanisms into multimodal AI models.  

Modality Alignment. Ensuring that data from different modalities are properly synchronized and comparable. For 

example, temporal alignment is critical for video and audio data. Contradiction Resolution. Multimodal data often 

contains inconsistencies, requiring the system to identify and reconcile conflicts. Scalability. As the number of 

modalities increases, so does the complexity of the reasoning process, making scalability a critical concern.  

Contextual Consistency. Multimodal reasoning systems must account for contextual variations across data 

sources to maintain coherence in decision-making.  

4. Existing Multimodal Reasoning Frameworks  

Recent studies have proposed several approaches for multimodal reasoning:  
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Attention Mechanisms. Transformers, such as the Vision Language Transformer (ViLT) [3], utilize cross-modal 

attention to model relationships between modalities. Graph-Based Models. Graph neural networks (GNNs) have 

been employed to represent multimodal data as interconnected nodes, facilitating reasoning through graph 

traversal. Rule-Based Augmentation. Some systems incorporate predefined rules to guide the reasoning process, 

particularly in domains like medical diagnostics [7]. While these approaches provide valuable insights, they often 

prioritize representation over inference, highlighting the need for robust reasoning mechanisms tailored to 

multimodal contexts. To address the latter challenge, the so-called explainable AI (XAI) research field has 

emerged, which aims, among others, at estimating meaningful explanations regarding the employed model 

reasoning process. The current study focuses on systematically analyzing the recent advances in the area of 

Multimodal XAI (MXAI), which comprises methods that involve multiple modalities in the primary prediction 

and explanation tasks. In particular, the relevant AI-boosted prediction tasks and publicly available datasets used 

for learning/evaluating explanations in multimodal scenarios are initially described. Subsequently, a systematic 

and comprehensive analysis of the MXAI methods of the literature is provided, taking into account the key criteria 

- the number of the involved modalities, the processing stage at which explanations are generated, and the type 

of the adopted methodology (i.e. the actual mechanism and mathematical formalization) for producing 

explanations [9]. Then, a thorough analysis of the metrics used for MXAI methods evaluation is performed. 

Recently, science question benchmarks have been used to diagnose the multi-hop reasoning ability and 

interpretability of an AI system. Existing datasets fail to provide annotations for the answers, or are restricted to 

the textual-only modality, small scales, and limited domain diversity. To this end, we present Science Question 

Answering (ScienceQA), a new benchmark that consists of ~21k multimodal multiple-choice questions with a 

diverse set of science topics and annotations of their answers with corresponding lectures and explanations [10].  

Mathematical reasoning, a core ability of human intelligence, presents unique challenges for machines in abstract 

thinking and logical reasoning. Recent large pretrained language models such as GPT-3 have achieved remarkable 

progress on mathematical reasoning tasks written in text form, such as math word problems (MWP). It is unknown 

if the models can handle more complex problems that involve math reasoning over heterogeneous information, 

such as tabular data [11].  

Mathematical reasoning is a fundamental aspect of human intelligence and is applicable in various fields, 

including science, engineering, finance, and everyday life. The development of artificial intelligence (AI) systems 

capable of solving math problems and proving theorems in language has garnered significant interest in the fields 

of machine learning and natural language processing [12].  Large language models (LLMs) have achieved 

remarkable progress in solving various natural language processing tasks due to emergent reasoning abilities. 

LLMs have inherent limitations as they are incapable of accessing up-to-date information (stored on the Web or 

in task-specific knowledge bases), using external tools, and performing precise mathematical and logical 

reasoning [13].  Chain-of-thought prompting offers several advantages for enhancing reasoning capabilities in 

language models. By decomposing complex problems into a series of intermediate steps, models can allocate 

computational resources more effectively and improve their ability to solve multi-step problems. Furthermore, 

the chain of thought provides valuable insights into the model's reasoning process, enabling researchers to 

understand its inner workings and identify areas for improvement. This approach has shown promise in various 

tasks, including math word problems, common sense reasoning, and symbolic manipulation. Importantly, chain-

of thought reasoning can be readily elicited in large language models by simply including examples of chain-of-

thought sequences [14]. Large Language Models (LLMs) and Large Multimodal Models (LMMs) exhibit 
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impressive problem-solving skills in many tasks and domains, but their ability in mathematical reasoning in visual 

contexts has not been systematically studied. To bridge this gap, we present MathVista, a benchmark designed to 

combine challenges from diverse mathematical and visual tasks [15]. Recent advancements have seen a surge in 

interest in utilizing Large Language Models (LLMs) for scientific research. While various benchmarks exist to 

assess their scientific research capabilities, many rely primarily on recollected objective questions, suffering from 

data leakage and an inability to evaluate subjective question-answering abilities. To address these limitations, this 

paper introduces SciEval, a novel, comprehensive, and multi-disciplinary benchmark for evaluating LLMs in 

scientific research. Aligned with Bloom's taxonomy, SciEval encompasses four dimensions to systematically 

assess scientific research abilities. Notably, SciEval incorporates a "dynamic" subset of questions generated based 

on scientific principles, mitigating the risk of data leakage. This innovative approach provides a more robust and 

reliable means of evaluating LLM performance in scientific research contexts [16]. Pretrained large language 

models (LLMs) are widely used in many sub-fields of natural language processing (NLP) and are generally known 

as excellent few-shot learners with taskspecific exemplars. Notably, chain of thought (CoT) prompting, a recent 

technique for eliciting complex multi-step reasoning through step-by-step answer examples, achieved state-of-

the-art performances in arithmetics and symbolic reasoning, difficult system-2 tasks that do not follow the 

standard scaling laws for LLMs. While these successes are often attributed to LLMs' ability for few-shot learning, 

we show that LLMs are decent zero-shot reasoners by simply adding "Let's think step by step" before each answer 

[17]. Generating step-by-step "chain-of-thought" rationales improves language model performance on complex 

reasoning tasks like mathematics or commonsense question-answering. However, inducing language model 

rationale generation currently requires either constructing massive rationale datasets or sacrificing accuracy by 

using only few-shot inference. We propose a technique to iteratively leverage a small number of rationale 

examples and a large dataset without rationales, to bootstrap the ability to perform successively more complex 

reasoning [18]. State-of-the-art models have generally struggled with tasks that require quantitative reasoning, 

such as solving mathematics, science, and engineering problems at the college level. To help close this gap, we 

introduce Minerva, a large language model pre-trained on general natural language data and further trained on 

technical content. The model achieves state-of-the-art performance on technical benchmarks without the use of 

external tools [19].  The proposed approach employs explain ability by obeying the co-learning principles of 

dealing with noisy and missing modalities either at train or test time to find the modality dominance by extracting 

the local and global model explanations [20]. The proposed approach is validated with post hoc explain ability 

methods such as local interpretable model-agnostic explanations (LIME) and SHapley Additive explanations 

(SHAP) gradient-based explanations to model the modality contributions and interactions at the fusion level. The 

co-learning-based system ensures trust and robustness in the model by providing some degree of model explain 

ability along with robustness. The kind of explanations provided is multifaceted and is obtained through a peek 

inside the black box, hence is specifically helpful for the system designers and model developers to understand 

the complex model dynamics that are far more challenging in the case of multimodal applications. Traditional 

ways of categorizing multimodal data fusion, like early and late fusion, are outdated for today's deep learning 

approaches.  Instead, we propose a more detailed classification based on prevalent techniques. This new taxonomy 

organizes cutting-edge models into five categories: Encoder-Decoder, Attention Mechanism, Graph Neural 

Network, Generative Neural Network, and Constraint-based methods [21]. While large language models excel at 

complex reasoning using chain-of-thought prompting, which generates intermediate reasoning steps, this 

approach has mainly focused on text. In [22] introduced Multimodal-CoT, a two-stage framework that integrates 
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both text and images for enhanced reasoning. By separating rationale generation and answer inference, 

Multimodal-CoT allows the inference stage to benefit from richer, multimodal rationales.  

5. Contribution of TRIZ Principles  

The Theory of Inventive Problem Solving (TRIZ) offers a systematic approach to addressing contradictions and 

generating innovative solutions. Though traditionally applied in engineering, its principles have been explored in 

AI for tasks such as optimization and problem-solving [1]. Integrating TRIZ into multimodal reasoning 

frameworks presents an opportunity to systematically address challenges like modality alignment and conflict 

resolution. The existing body of work demonstrates significant progress in multimodal AI and reasoning systems, 

yet gaps remain in developing mechanisms that can seamlessly integrate diverse modalities while performing 

logical inference. This study builds on prior research by leveraging TRIZ principles to address these gaps, offering 

a novel approach to reasoning in multimodal AI systems. Innovation methodology, and ChatGPT, a large 

language model adept at generating diverse and creative text.  Our goal was to identify how combining these two 

approaches could drive innovation in competitive business environments.  Case studies, such as "Imperfect 

Waterproof Zipper" and "Drilling a Hole in a Thin-Walled Tube," demonstrated that this integration not only 

mirrors real-world problem-solving processes but also improves solution quality. This is especially helpful for 

developers less familiar with TRIZ [23]. TRIZ principles provide a structured methodology to tackle multimodal 

reasoning's inherent complexities, from contradiction resolution to scalable fusion. By bridging engineering 

heuristics with AI innovation, TRIZ-enhanced models can advance toward context-aware, robust, and 

interpretable multimodal systems. Future research should focus on the empirical validation of TRIZ-inspired 

architectures and the development of domain-specific TRIZ-AI toolkits. In today's rapidly evolving technological 

landscape, organizations face intense competition.  Research and Development (R&D) and effective product 

marketing are now more critical than ever.  Multinational enterprises must prioritize both innovation and 

marketing strategies to maintain a competitive edge. TRIZ, a leading disruptive innovation methodology, offers 

valuable tools applicable across diverse industries and scientific fields, accessible to a wide audience. This paper 

presents an adapted contradiction matrix, a key TRIZ tool, along with several TRIZ-inspired principles [24].  

Paper [25] argues that TRIZ heuristics are a valuable addition to courses involving open-ended problem-solving.  

Research shows that even a single class session focused on a TRIZ heuristic can noticeably boost students' 

confidence in their creative problem-solving abilities. The TRIZ Repository of educational materials offers a 

resource that could help many engineering instructors integrate creative problem-solving techniques into their 

teaching [26].  

III. MATERIAL AND METHODS  

A. CONCEPTUAL MODEL OF REASONING MECHANISM FOR MULTIMODAL ARTIFICIAL 

INTELLIGENCE (AI) The proposed reasoning mechanism for multimodal AI integrates systematic inference 

processes with multimodal data representations, enabling intelligent decision-making and problem-solving across 

diverse modalities. This conceptual model is presented in Fig. 1 and consists of the following key components - 

Input Layer, Feature Fusion, Reasoning Engine, and Output Layer with Multimodal Reasoning Outcomes  
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Figure 1. Conceptual Model of Reasoning Mechanism for  

Multimodal Artificial Intelligence  

Let's look at each element of the model.  

1. Input Representation  

Modalities and Preprocessing  

Text Modality. Tokenization, embedding (e.g., Word2Vec, Transformer embeddings).  

Visual Modality. Image preprocessing (e.g., resizing, normalization), and feature extraction using CNNs or Vision 

Transformers.  

Audio Modality. Feature extraction via spectrograms or MFCCs, processed through RNNs or Transformers.  

Other Modalities. Similar preprocessing and feature extraction are based on the data type. Unified Representations  

Individual features from each modality are transformed into a common vector space to enable compatibility for 

integration.  

2. Feature Fusion  

Types of Fusion  

Early Fusion. Combining raw features (e.g., concatenation or projection to a shared space).  

Late Fusion. Integrating outputs from separate models trained on different modalities.  

Intermediate Fusion. Fusion happens at specific layers in the network after independent processing.  

Common Fusion Techniques  

Attention Mechanisms. Cross-modal attention to align and weigh features from different modalities.  

Projection Layers. Mapping each modality to a shared  

latent space.  

Graph Neural Networks. Represent relationships and interactions across modalities.  

Transformers. Specialized multimodal transformers integrate modality-specific embeddings.  

3. Reasoning Module  

Core Components  

Cross-Modal Attention. Mechanisms that align and attend to relevant information across modalities.  

Knowledge Integration. Using pre-trained models or external knowledge bases to inform reasoning.  

Inference Engines. Modules for logical reasoning, question answering, or decision-making based on fused 

representations.  

Techniques  

Self-Attention. Extract intra-modal relationships.  
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Cross-Attention: Model interdependencies between modalities.  

Reasoning Architectures  

Neural Logic Layers. Emulate rule-based reasoning.  

Relational Reasoning. Assess relationships between entities across modalities.  

4. Output Interpretation  

Decision-Making and Generation  

Outputs are generated based on the integrated features: Text Outputs. Generated using language models.  

Visual Outputs. Image synthesis or object localization.  

Multimodal Outputs. Generative models.  

Feedback Mechanisms  

Refinement of reasoning and outputs through loss functions, reinforcement learning, or alignment models.  

5. Optimization and Training  

Pretraining. Use of large-scale multimodal datasets (e.g., image-caption pairs).  

Fine-tuning. Domain-specific adaptation. Loss Functions Contrastive Loss.  

Task-Specific Loss (e.g., classification, translation, captioning).   

This conceptual model demonstrates a robust framework for enabling reasoning in multimodal AI systems, 

addressing both the complexity of diverse data and the need for systematic, context-aware decision-making.  

B. MATHEMATICAL MODEL FOR EVALUATING THE  

CREATIVITY LEVEL OF A MULTIMODAL AI SYSTEM  

Let's look at the Model Components for Creativity Evaluation. The creativity of a multimodal AI system can be 

evaluated based on originality, relevance, diversity, and adaptability in its outputs. Each of these dimensions can 

be quantified as follows:  

a. Originality   

Measures how unique or novel the AI's responses are compared to a reference dataset.  

𝑁𝑠 

𝑂 = 1 −   

𝑁𝑡 

where:  

Ns - Number of outputs similar to existing entries in a reference database (e.g., training data).  

Nt - Total number of outputs evaluated.  

b. Relevance   

Evaluates how well the outputs align with the context or prompt provided.  

∑ 𝑅𝑒𝑙(𝑖) 

𝑅 =   

𝑛 

where:  

Rel(i) - Human-rated or AI-assessed score (e.g., on a scale of 0 to 1) for each output's relevance.  

n - Number of outputs evaluated.  

c. Diversity  
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Measures the variety in the generated outputs across a set of prompts. This can be calculated using entropy or 

distance measures.  

𝐷 = − 𝑝 𝑙𝑜𝑔 (𝑝 )  

where:  

pi - Probability distribution of output types or categories.  

k - Number of unique output types. Alternatively, diversity can be measured using cosine similarity or pairwise 

distances between outputs in a feature space:  

∑ Sim(i, j) 

D = 1 −   

d. Adaptability   

Measures the AI's ability to modify its responses based on changes in context or constraints.  

∑ Adapt(𝑖) 

A =   

𝑚 

where:  

Adapt(i)- Score reflecting how well the system adapts to a shifted or modified prompt (rated 0-1).  

m: Number of adaptive tests conducted.  

Let's look at Overall Creativity Score to combine these dimensions into a single creativity score, a weighted 

formula can be used:  

C=wO⋅O+wR⋅R+wD⋅D+wA⋅A where:  

wO,wR,wD,wA: Weights assigned to each dimension based on their relative importance.  

The weights should sum to 1 (wO+wR+wD+wA=1).  

 Let's define a Unified Creativity Score Across Modalities. If evaluating creativity across multiple modalities in 

a multimodal AI system:  

1 

𝐶 =  𝑤 𝐶  

𝑛 

where:  

 Ci - Creativity score for each modality (text, image, or voice).  

 Wi - Weight assigned to each modality based on its importance or relevance to the task.  

 n - Total number of modalities.  

Evaluation Process defined by next steps.  

a. Dataset Creation. Define a set of prompts covering various topics, scenarios, and creativity challenges 

(e.g., storytelling, problem-solving, artistic generation).  

b. Output Generation. Use the AI system to generate responses for each prompt.  

c. Dimension Scoring.  

 Measure originality by comparing outputs against a database of existing responses.  

 Evaluate relevance and adaptability using human raters or AI-assisted scoring systems.  

 Calculate diversity using entropy or similarity metrics.  

d. Compute C. Use the formula to calculate the overall creativity score.  
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Applications  

Benchmarking. Compare creativity levels across AI systems.  

Optimization. Identify areas for improvement (e.g., boosting diversity or adaptability).  

Development. Refine AI algorithms to enhance creative outputs.  

This model provides a structured and quantifiable approach to assess and improve the creativity of multimodal 

AI systems.  

C. CASE STUDY. IMPLEMENTING A REASONING  

MECHANISM IN MULTIMODAL AI MODELS USING TRIZ Implementing a reasoning mechanism in 

multimodal AI models using TRIZ (Theory of Inventive Problem Solving) principles can significantly enhance 

its creativity level. TRIZ is a systematic approach to innovation and problem-solving, often applied in engineering 

but adaptable to AI to boost creative reasoning capabilities. Here's how it can change the creativity level of AI 

structured step-by-step:  

TRIZ Principles Relevant to AI Creativity  

TRIZ involves 40 inventive principles, some of which are particularly relevant to multimodal AI systems. By 

embedding these principles into the reasoning mechanism, we can enhance the model's ability to innovate. Key 

principles include:  

 Segmentation (Principle 1): Decompose problems into smaller, manageable parts for more focused 

creative solutions.  

 Combining (Principle 5): Combine modalities (text, image, and audio) to generate richer, more creative 

outputs.  

 Universality (Principle 6): Adapt the AI to perform multiple functions simultaneously for holistic 

reasoning.  

 Dynamics (Principle 15): Allow the system to dynamically adjust its reasoning strategies based on context 

or user needs.  

 Self-service (Principle 25): Empower the AI to selfevaluate and optimize its outputs for creativity. 

Enhancements to Creativity via Reasoning Mechanism a) Enhanced Originality  

 As is ChatGPT and DeepSeek generate creative responses but may lack deeper reasoning to justify or 

refine them.  

 TRIZ Integration. Apply Principle 15 (Dynamics) to develop a mechanism that explores diverse reasoning 

paths dynamically before converging on an output.  

b) Improved Contextual Relevance  

 As is the model may sometimes generate responses that are creative but stray from the input context.  

 TRIZ Integration. Use Principle 6 (Universality) to incorporate multimodal context reasoning (e.g., text + 

image + audio). The AI would synthesize all input modes for coherent responses.  

c) Multimodal Synergy  

 As is limited interaction between text, image, and voice modalities in creative tasks.  

 TRIZ Integration. Leverage Principle 5 (Combining) to create reasoning layers that synthesize information 

across modalities for creative fusion.  

d) Greater Adaptability  

 Creativity is constrained by pre-trained patterns and lacks adaptability to unconventional prompts.  
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 TRIZ Integration. Use Principle 25 (Self-service) to implement self-assessment loops where the AI 

evaluates the novelty, relevance, and impact of its outputs, refining them iteratively.  

Mathematical Model for Creativity with TRIZ Integration The enhanced creativity score (Cenh) can be modelled 

as:  

Cenh=wO⋅O+wR⋅R+wD⋅D+wA⋅A+wT⋅T where:  

T - TRIZ-based reasoning factor, reflecting the AI's ability to solve problems innovatively across modalities.  

wT - Weight assigned to TRIZ-based reasoning, which amplifies the creativity score.  

Other terms (O, R, D, A) are as previously defined (Originality, Relevance, Diversity, Adaptability).  

The TRIZ-based reasoning factor T can be decomposed as:  

T=f(S,Cm,Am)  

Where:  

S - Problem segmentation capability.  

Cm - Multimodal synergy (degree of combining inputs across text, image, and voice).  

Am - Adaptive reasoning to evolving user constraints.  

Anticipated Changes in Creativity Level  

Implementing TRIZ-based reasoning mechanisms presented in Fig. 2.   

 
 

 

 

 

 

 

 

 

 

 

 

Figure 2. Implementing TRIZ-based reasoning mechanisms Practical Implementation Steps  

 Practical Implementation Steps are presented in Fig. 3.  

   

1 . Increase Originality – O. By  
dynamically generating  

unconventional ideas and  
combining modalities  

creatively.  

. Improve Relevance  2 – R . By  
reasoning about the user's  

intent across multimodal  
inputs  

3 . Boost Diversity  - D. By  
exploring alternative outputs  

using systematic problem 
solving strategies.  

4 . Enhance Adaptability – A .  
By enabling the model to  

refine its outputs in iterative  
loops based on reasoning and  

feedback. 
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Introduce TRIZ Reasoning Layers. Add layers to the transformer architecture that systematically apply TRIZ 

principles (e.g., segmentation and combination). 

Build Multimodal Fusion Models. Develop modules that integrate reasoning across text, image, and voice 

Feedback Loops for Optimization. Implement mechanisms for self-assessment of outputs based on creativity 

metrics. 

TRIZ-Inspired Training Data. Train on datasets designed to highlight problemsolving and creative reasoning in 

multimodal contexts. 

 Figure 3. TRIZ Practical Implementation Steps  

 Integrating a reasoning mechanism based on TRIZ principles into a multimodal AI framework can substantially 

elevate its creativity level. The systematic problem-solving capabilities of TRIZ will enable the model to produce 

outputs that are not only innovative but also highly relevant, diverse, and adaptable across multiple modalities.  

The selected TRIZ principles for Reasoning Mechanisms in Multimodal AI Models are presented in Table 1.  

Table 1. TRIZ Principles for Reasoning Mechanisms in  

Multimodal AI Models  

Rank  TRIZ Principle  Rationale  

1  Segmentation  

Breaking down complex data streams into smaller, more 

manageable units.  

2  Asymmetry  

Introducing asymmetry in processing to improve efficiency 

and robustness.  

3  Local Quality  

Focusing on improving reasoning within specific sub-

modules.  

4  Dimensionality  

Shifting the problem to a higher-dimensional space for better 

insights.  

5  

Parameter Variation  Continuously adjusting model parameters based on 

feedback.  

6  Universality  

Designing mechanisms applicable across a wide range of 

scenarios.  

7  Negatation  

Incorporating mechanisms for explicitly negating erroneous 

reasoning paths.  

These are just a few examples of how TRIZ principles can be chained together to create more sophisticated 

reasoning mechanisms for multimodal AI. The specific chains will vary depending on the specific application 

and the desired outcomes.  

The chains of TRIZ principles for AI reasoning mechanisms are presented in Table 2.  

 Table 2. The chains of TRIZ principles for AI reasoning mechanisms  

Chain ID  Principle 1  Principle 2  Principle 3  Principle 4  

Chain 1:  

Enhancing 

Reasoning  

    



International Journal of Intelligent Systems and Computing, Volume 13 (2), 2025 | ISSN: 2997-0849  

   

Original Article   

   ©2025 Noland Journals    

61     

Through 

Abstraction and  

Refinement  Segmentation  Abstraction  Dimensionality  Universality  

Chain 2:  

Optimizing 

Reasoning 

Through  

    

Dynamic  

Adaptation  

Parameter Variation  

Asymmetry  Local Quality    

Chain 3:  

Enhancing 

Robustness and  

    

Reliability  Negotiation  Segmentation  Asymmetry    

By resolving contradictions, we can create more effective and innovative solutions for multimodal AI reasoning. 

Using these qualitative and quantitative features, multimodal AI can detect contradictions and apply TRIZ 

problem-solving principles such as - breaking down multimodal inputs for independent validation, using historical 

data to predict inconsistencies before fusion, adjusting weightage for text vs. image reliability dynamically and 

prioritizing modality with higher confidence levels.  

This structured approach ensures multimodal AI systems detect and resolve contradictory information efficiently, 

improving decision-making in high-stakes environments.  

Let's re-examine the chains with a focus on contradictions:  

Chain 1. Addressing the Contradiction: "Improve Reasoning Accuracy while Reducing Complexity"  

Segmentation. Divide the input data into smaller, more manageable units to reduce complexity.  

Abstraction. Extract essential features from each segment, simplifying the information processed.  

Dimensionality. Reduce the dimensionality of the data while preserving key information, further simplifying 

processing.  

Local Quality. Focus computational resources on the most critical segments and features, improving accuracy 

without increasing overall complexity.  

Chain 2. Addressing the Contradiction: "Improve Reasoning Flexibility while Maintaining Robustness"  

Asymmetry. Introduce asymmetry in processing to adapt to different input modalities and contexts, improving 

flexibility.  

Parameter Variation. Dynamically adjust model parameters to adapt to changing conditions and improve 

robustness.  

Local Quality. Focus on improving the robustness of critical reasoning modules within the overall system.  

Chain 3. Addressing the Contradiction: "Enhance Reasoning Accuracy while Minimizing Data Requirements"  

Segmentation. Focus processing on the most informative segments of the input data, reducing the overall data 

volume.  

Abstraction. Extract essential features and relationships, minimizing the need to process raw data.  

Dimensionality. Reduce the dimensionality of the data representation, making it more efficient to process and 

store.  
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By explicitly identifying and addressing contradictions within each chain, we can better leverage the power of 

TRIZ to develop more innovative and effective multimodal AI reasoning systems.  

By explicitly identifying and addressing contradictions within each chain, we can better leverage the power of 

TRIZ to develop more innovative and effective multimodal AI reasoning systems.  

Let’s Evaluate the TRIZ Principle Chains for Multimodal AI Reasoning (Table 3).  

Table 3. Evaluation of TRIZ Principle Chains for  

Multimodal AI Reasoning  

Chain ID  Contradiction  Principles  

Potential  

Performance  

Potential  

Drawbacks  

Chain 1  

Improve  

Reasoning Accuracy 

while Reducing  

Complexity  

Segmentati on,  

Abstraction 

,  

Dimensiona lity, 

Local Quality  

High Potential. This chain 

effectively addresses the 

contradiction by 

simplifying the processing 

while maintaining key 

information. Segmentation 

and Abstraction reduce 

complexity, while 

Dimensionality and Local 

Quality focus 

computational resources on 

the most important  

aspects, potentially  

Improving accuracy.  

Potential for information 

loss during abstraction and 

dimensionality reduction.  

Chain 2  

Improve  

Reasoning  

Flexibility while 

Maintaining  

Robustness  

Asymmetry 

, Parameter  

Variation,  

Local  

Quality  

High Potential. This chain 

aims to create a more 

adaptable and robust 

system. Asymmetry and  

Parameter Variation allow 

for dynamic adjustments, 

while Local Quality  

Ensures that critical 

reasoning modules remain 

robust even with these 

adjustments.  

Potential for overfitting or  

Instability if parameter 

variations are not carefully 

managed.  

Chain 3  

Enhance  

Reasoning Accuracy 

while  

Minimizing  

Data  

Segmentati on,  

Abstraction 

,  

Dimensiona 

lity  

Moderate Potential. This 

chain focuses on reducing 

data requirements, which 

can be beneficial.  

Potential for significant 

information loss, leading 

to decreased accuracy.  
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Requirements  However, excessive data 

reduction may lead to 

information loss and hinder 

accurate reasoning.  

This analysis provides a more nuanced evaluation of the proposed TRIZ principle chains. By carefully considering 

the potential benefits and drawbacks of each chain, researchers can select the most appropriate approach for their 

specific needs and develop more effective and robust multimodal AI reasoning systems.  

IV. DISCUSSION AND FINDINGS  

The implementation and evaluation of the proposed reasoning mechanism for multimodal artificial intelligence 

(AI) yielded several important insights. These findings underline the effectiveness and potential challenges of 

integrating TRIZ principles into multimodal reasoning frameworks.  

1. Improved Multimodal Integration  

The unified feature extraction and representation module effectively combined diverse data modalities (e.g., text, 

images, and audio) into a shared latent space, facilitating seamless cross-modal reasoning.  

Attention mechanisms enabled the system to prioritize relevant features, improving the interpretability and 

precision of reasoning processes. The ability to dynamically align and integrate multimodal data proved essential 

for accurate reasoning in complex scenarios, such as medical diagnostics and autonomous decision-making. This 

highlights the need for robust embedding techniques that preserve modality-specific nuances while enabling 

cross-modal understanding.  

2. Enhanced Reasoning via TRIZ Principles  

The incorporation of TRIZ principles, particularly contradiction analysis, helped the system resolve conflicts 

between data from different modalities. For example, when textual and visual data provided contradictory 

information, the contradiction resolution module applied systematic techniques to reconcile differences.  

TRIZ ideality principles contributed to generating optimal solutions by balancing resource constraints and 

maximizing outcomes. The integration of TRIZ principles added a structured and innovative dimension to the 

reasoning process. This systematic approach allowed the model to handle realworld complexities, such as 

incomplete or ambiguous data, with greater efficacy than traditional reasoning methods.  

3. Contextual and Logical Consistency  

The contextual understanding module successfully maintained logical coherence across modalities, ensuring that 

decisions were informed by the broader context of the input data. Neuro-symbolic reasoning techniques, 

combined with rule-based logic, enhanced the system’s ability to perform tasks requiring both deductive and 

inductive reasoning. Maintaining contextual consistency is a critical factor for multimodal reasoning. By 

leveraging graph-based representations and neuro-symbolic methods, the proposed framework demonstrated a 

capability to deliver contextually relevant and logically sound outcomes.  

4. Scalability and Adaptability  

The reasoning engine scaled effectively with increasing numbers of modalities and data complexity.  

The feedback loop allowed for adaptive learning, enabling the system to refine its reasoning processes based on 

performance metrics and evolving input data.  
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Scalability and adaptability are crucial for deploying multimodal AI in dynamic environments such as smart cities 

or autonomous systems. The proposed mechanism’s performance in scaling up without significant loss of 

efficiency underscores its practicality for real-world applications.  

5. Challenges Identified  

Data Quality Dependence. The system’s performance heavily relied on the quality and reliability of input data 

from each modality. Noisy or incomplete data posed challenges for accurate reasoning.  

Computational Overhead. The complexity of integrating and reasoning across multiple modalities resulted in 

higher computational costs, necessitating optimization for real-time applications.  

Explain ability. While the mechanism improved reasoning accuracy, providing transparent explanations for 

complex decisions involving multiple modalities remains a challenge.  

The proposed mechanism enhances multimodal reasoning by integrating TRIZ principles for systematic problem-

solving. Cross-modal attention and dynamic embedding’s enable effective integration and contextual 

understanding. Multimodal learning integrates different types of input data—such as text, images, commands, 

and spoken language— to create AI systems capable of reasoning across multiple information sources. Proper 

selection of training, validation, and test samples is critical for ensuring robust learning, generalization, and 

performance evaluation. Training samples must ensure multimodal diversity, balance, and robustness.  

Validation samples should include both normal and edge cases to refine the model.  

Test samples should evaluate real-world generalization, including unseen modalities and cross-modal 

inconsistencies. Handling different input data types requires specific preprocessing, augmentation, and evaluation 

techniques tailored to each modality.  

TRIZ-based contradiction resolution ensures logical consistency and innovative solutions to complex problems.  

Scalability and adaptability make the model suitable for diverse applications but require computational efficiency 

improvements.  

Handling large-scale multimodal data while maintaining context and minimizing computational costs is one of 

the biggest challenges in multimodal AI. The solution involves efficient data fusion, optimized architecture 

designs, and compression techniques to ensure smooth interaction between text, images, audio, structured data, 

and other modalities. While TRIZ remains valuable for structured problemsolving, its application in multimodal 

AI and dynamic learning environments is limited due to scalability, adaptability, and computational challenges.  

These findings highlight the potential of combining multimodal AI with TRIZ principles to develop robust 

reasoning frameworks. Future work should focus on optimizing computational efficiency, improving 

explainability, and addressing challenges related to noisy or incomplete data. This approach opens new avenues 

for AI applications in areas requiring advanced reasoning, such as smart cities, healthcare, and autonomous 

systems.  

V. CONCLUSION  

This paper proposed a novel reasoning mechanism for multimodal artificial intelligence (AI) systems, leveraging 

TRIZ (Theory of Inventive Problem Solving) principles to address challenges in integrating and interpreting 

diverse data modalities. The research demonstrated that combining TRIZ methodologies with advanced 

multimodal representation and reasoning techniques enhances the ability of AI systems to perform complex, 

context-aware decision-making tasks.  
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