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INTRODUCTION operations on Galois fields are performed without the need for operations in Galois fields are 

widely used in several carry bits, which implies that each bit can be processed in applications of current 

information technology. One of the parallel. In addition, this leads to specific properties of squaring Transmitted 

regarding the status of a remote object [7]. Existing DSA-type digital signature mechanisms presuppose the ability 

to use modular exponentiation on large size numbers. Performing this operation at 4096 most important areas of 

application of the Galois fields are cryptographic mechanisms for the protection of information. The Galois fields 

are actively used in stream cipher algorithms [1], can provide the implementation of the fundamental crypto 

graphic transformations of the AES algorithm [2, 3], form the basis for the creation of cryptographic mechanisms 

of public key algorithms, such as digital signatures [4, 5] and are used for the zero-knowledge authentication of 
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remote users [6, 7]. For cryptographic applications, the attractive aspect of using the Galois field’s algebra is that 

by carefully selecting the polynomial to define the field, it becomes possible to generate a set of algebraic bases, 

for which the results of the operations are different.  This opens up the possibility of significantly increasing the 

security level without increasing the bit length of the numbers processed. However, the principle attractive feature 

for using Galois field algebra to implement public key cryptography, is that they enable an increase in the speed 

of computer implementation of the corresponding information security protocols by an order of magnitude. This 

is due to the fact that on Galois fields [5], which can be used to accelerate this operation many times over. The 

above allow the consideration of public key cryptographic mechanisms based on Galois field algebra as an 

effective alternative to classical algorithms based on modular arithmetic. Such algorithms are of particular interest 

for low power terminal microcontrollers of remote-control systems used in IoT technologies. This class of 

computational platforms is continuously expanding due to the rapid improvement of Internet technologies, 

expansion of connectivity and availability of inexpensive radio communication equipment. Using the Internet as 

a medium for data exchange with remote control systems of real world objects, provides many advantages. It is 

however also associated with a significant number of problems. The most important of these problems is the 

necessity to ensure the protection of data transmitted over the potentially open Internet [6]. For remote control 

systems, the most prominent threat is external intervention in their operation. For the protection against such 

intervention, it is necessary to utilize digital signature technologies for each control message to the terminal 

microcontroller or data item bits resolution requires a significant amount of computational effort. This is a 

particularly important obstacle when implemented on a low power microcontroller, which is utilized for 

implementing real-time control of remote equipment. One of the available ways of overcoming this situation is 

the use of Galois field algebra combined with research of techniques for the acceleration of exponentiation of 

large numbers. The purpose of this research is the acceleration of the operation of exponentiation in Galois fields 

that can provide the foundation for a large number of cryptographic protocols.  

STATE OF THE ART: PROBLEM STATEMENT AND  

REVIEW OF CURRENT TECHNIQUES  

Interest in the practical use of the of finite Galois fields GF(2n) algebra for creating fast mechanisms of public-

key cryptography as an alternative to classical technologies based on modular arithmetic, stimulates research for 

creating efficient methods of the fundamental operation of exponentiation on Galois fields [8, 9].  

When using the Galois field algebra GF(2n), a polynomial representation of numbers in the form   

A(x)  an 1xn 1  an 2xn 2 ...  a1x  a0 (1)  

j {0,1,...,n 1}:aj {0,1} is commonly used, which corresponds to the usual representation of the number   

A  an 12n 1  an 22n 2 ...  a12  a 0    (2)  

Addition in Galois Fields is preformed via the logical XOR operation and will be from here on represented by the 

symbol ‘ ’ [6]. Reduction or the calculation of the remainder of a polynomial division A(x) by the produced 

polynomial P(x) in the Galois field will be represented as A rem P, so as to be distinguishable from the division 

of number A by number M in regular algebra, denoted as A mod M. The multiplication operation in the Galois 

fields A  B rem P, consists of two operations: polynomial multiplication, denoted by ‘ ’ and the reduction of 

the polynomial produced by the field polynomial P [10].  

The operation of calculating the square of a number A in the Galois field with the produced polynomial P is 

denoted as A A rem P or A|2 rem P.  Consequently, the exponentiation operation in the Galois fields, i.e. the 
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calculation of the remainder of the polynomial division of the number A raised to the power E in the polynomial 

P is denoted as A|E rem P [10]. The existing exponentiation technologies, both in traditional algebra and in Galois 

fields are based on a classical algorithm that performs a bit-by-bit analysis of the bits of the exponential code   

Е = {en-1, en-2, e0}, j  {0, 1, n-1}; ei {0, 1}       (3)  

At every step, a calculation of a square in the Galois field is performed, and the multiplication operation is 

dependent on the value of the current bit of the exponent. Given that in every next step, the results of the previous 

step are used, the algorithm cannot be parallelized at the level of the processing of the bits of the exponent.  

There exist two variants of this algorithm that differ as to the direction of the analysis of the bits of the exponent. 

When the exponentiation starts at the most significant bits of the exponent, in each of the n steps the calculation 

of the square of the current result is performed and the result is multiplied by A if the current bit of the exponential 

code is 1. Therefore, the mean time t0 for the exponentiation starting from the most significant bits is 1.5 n tm, 

where tm is the time required for the multiplication in the Galois field. The advantage of the exponentiation starting 

from the least significant bit is that there exists a possibility for partial parallelization of the calculations in one 

step. This enables the acceleration of the calculations by 1.5 times [10]. Further acceleration of the exponentiation 

in the Galois field may be attained by reducing the times required for the multiplication and for calculation of the 

square. In turn, the multiplication and the power calculation in the Galois fields consists of operations performed 

on large n bit numbers and on small numbers whose bit size is smaller than that of the processor. In actual 

cryptographic systems that use exponentiation in Galois fields the value of n is 2048 or 4096 i.e. 1 – 2 orders of 

magnitude larger than that of microprocessors (8 – 64). Hence, for the comparative evaluation of efficiency, it is 

recommended to consider only operations on large numbers. The multiplication operation consists of two phases: 

the polynomial multiplication and the reduction of the obtained result. The polynomial multiplication of the n bit 

numbers requires 2 n shift operations (both operands are shifted) and, on average, 0.5 n logical additions 

operations (XOR). All the above operations belong to the logical class and are executed in approximately the 

same time. It can therefore be assumed that the logical multiplication requires, on average, 2.5 n logical 

operations. The polynomial division is also performed in n cycles, each of which consists of a shift of the code of 

the Galois field production polynomial and of the test code and, with probability 0.5, the logical addition. Hence 

the multiplication of the Galois field is performed in 2.5 n logical operations [7].  

There are two main approaches used for the acceleration of the multiplication operation in the Galois fields:  

1. Application of preliminary calculations for the acceleration of the reduction  

2. Combination of the polynomial multiplication and of the reduction  

Most of the existing methods [10, 11] that use the first approach use pre-calculations depending on the produced 

polynomial P(x) of the Galois field, based on the fact that in real cryptographic protocols, this is part of the public 

key and can consequently be considered as constant [12]. It may therefore be pre-calculated and be stored for n 

remainders.  

Qn-1= 22 n-1 rem P(x), Qn-2=22 n-2 rem P(x),…,   

Q1=2n+1 rem P(x), Q0 = 2n rem P(x)         (4)  

After the division of the produced polynomial P(x) of the Galois field the reduction consists of the calculation of 

the logical sum of the values of the table the correspond to the ones in the most significant bits of the produced 

polynomial. Due to the pre-calculation, the number of logical operations is reduced to 1.5 n. If there exist 

memory resources for the storage of a table of n 2h values, during the reduction operation, h bits of the product 
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may be processed in parallel. Therefore, the time required for the performance of the reduction operation becomes 

smaller by h times [13]. The combination of the polynomial multiplication and reduction was proposed in [14]. 

The described method is based on solving a sequence of congruence’s that are derived from the Grobner theory 

bases in modules over the polynomial ring GF (p). Such a solution is effective for implementation in hardware, 

when it is feasible to perform the parallel implementation of the logical sum of multiple numbers.  Hardware 

implementations enable an increase in the speed and stability of exponent computation on Galois fields by 

accelerating the squaring on Galois fields [15].  Another option for the combination of polynomial multiplication 

and reduction that is oriented towards software implementations, is the use of the Montgomery technology that 

was modified for Galois fields [16-18]. According to this approach, the combined operation is performed in n 

steps, each one of which involves the processing of the least significant bit of the multiplier and the logical 

addition with the binary code of the result, if this bit is equal to 1. Additionally, depending on the least significant 

bit of the result, the logical addition with the producing polynomial of the field is performed. The result and the 

bit code of the multiplier are then shifted. As a result, the average number of logical operations is 3 n [19].  

Hence the total number T0 of logical operations performed in large n-bit numbers for the performance of the 

exponentiation in Galois fields using multiplication for the calculation of the square in the context of the 

Montgomery combination of multiplication and reduction is given by the formula [20]:   

T0  n (3 n  0.5 3 n)  4.5 n 2             (5)  

In [20], a variant of the combined use of pre-calculations depending on the constitutive polynomial of a Galois 

field and Montgomery reduction for accelerating the squaring is proposed. However, these studies lack an 

effective implementation of the above idea into another component - multiplication by a constant number and into 

the exponentiation process on Galois fields in general. An analysis of the algorithm of classical exponentiation in 

Galois fields demonstrates that 2/3 of the volume of computations are devoted to the calculation of the square 

[21]. Consequently, the most promising direction for the increase of the speed of exponentiation in Galois fields, 

is research for the reduction of the computational complexity of the operation of the calculation of the square.  

NOTABLE PREVIOUS RELATED WORK  

This problem has attracted significant attention from researchers, due to its importance for providing enhanced 

information security [22]. Additionally, it has attracted attention due to the possibility of applying accelerated 

calculations in other fields as well. In [23], modular arithmetic used for error correction coding could benefit from 

the application of this technique. Accelerated modular arithmetic is also applied in the case of wireless sensor 

networks [24]. Other researchers have investigated the possibility of employing accelerated calculations in hybrid 

random number generators [25] and emphasizing in serial encryption [26]. Accelerated modulo arithmetic 

operations have also been recognized as capable of also benefiting cryptographic hardware implementations [27].   

STATE – OF – THE ART IN CURRENT RELATED TECHNIQUES  

The proposals by Zhang [28] involve an improved Barrett modular multiplication (BMM) algorithm along with 

a hardware-efficient design. The key idea is to parallelize the quotient estimation and intermediate product 

computations, and to replace costly multi-word additions with lightweight carry-save compression operations. 

They introduce a novel data representation allowing use of tiny (2-bit and 3-bit) adders for certain overflow and 

partial-sum corrections. In an FPGA implementation, their optimized Barrett multiplier significantly outperforms 

both classical Barrett and Montgomery multipliers in terms of speed and area, especially for high-radix (large 

word size) arithmetic. This demonstrates that even a well-known method like Barrett’s can be tweaked at the 
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algorithmic level (quotient estimation and reduction steps) for notable efficiency gains in cryptographic hardware. 

In [29], the researchers present a software-side innovation that benefits modern CPUs with 512-bit SIMD 

instructions. They focus on the 52-bit fused multiply-add (VPMADD52) capability of the Intel AVX-512 to 

perform batch Montgomery multiplications in parallel. A novel contribution is their Truncated Montgomery 

Multiplication, which computes only the necessary lower half of certain intermediate products, reducing workload 

in the reduction phase. This optimization yields ~20% speedup in the inner multiplication loop compared to 

conventional Montgomery multiplication. By processing up to 8 modular multiplications in a word-sliced SIMD 

batch, they achieved over 4× faster modular multiplication throughput than GMP and OpenSSL for operands of 

1024 up to 4096-bit. For full modular exponentiation, their 512-bit wide implementation attained 1.75× speedup 

for 1024-bit exponents (and 1.38× for 2048-bit) over OpenSSL’s AVX2-based constant time exponentiation 

routine. The work in [30] focuses on the scenario where the base a is fixed across many exponentiations (common 

in certain protocols or repeated operations). They implemented a Montgomery-arithmetic based exponentiation 

in C++ and introduced a pre computation of a reduced residue table for powers of the fixed base. Using a right-

to-left binary exponentiation with that pre computed table, they achieved notable speedups for large exponents 

(larger than 1024 bits). In [31], the proposals tackled the problem of multiple simultaneous exponentiations which 

occurs in multi-base cryptographic protocols, batch verification, etc. They compared known multi-exponentiation 

algorithms (such as interleaving exponentiation vs. separate exponentiations) not just by counting multiplications, 

but by actual execution time on different hardware. A key finding is that the theoretically optimal algorithm (in 

terms of minimal multiplications) might not be the fastest in practice once factors like memory access and pipeline 

stalls are considered. Although not primarily about speed, it’s worth noting that in cryptographic contexts, 

sometimes a slightly slower algorithm is chosen to prevent timing or cache side-channels. For instance, a 

Montgomery ladder or a fixed-window method with dummy operations may be used to make execution time 

independent of secret exponents. Some recent research [32] evaluated the security of such implementations 

against cache attacks. While these works focus on security, they often propose minor tweaks that can reduce 

 the  performance  penalty  of  constant-time exponentiation.  

In the hardware front, researches have demonstrated [33] that RSA and modular exponentiation can be performed 

entirely in Residue Number System (RNS), eliminating the need for costly base-conversion steps at every 

multiplication. They leverage a recent technique called Sum of Residues reduction, which performs modular 

reduction within a single RNS system (as opposed to earlier RNS Montgomery methods that required two related 

RNS systems and multiple base extensions). By improving both the algorithm and the digital architecture, they 

achieved a 1024-bit modular exponentiation in only 0.567 ms on a Xilinx FPGA (Virtex-6), using a reasonable 

amount of resources. Other research [34] has addressed the efficiency of RNS from another angle, by looking at 

how to choose the RNS moduli for optimal performance and simpler conversion. The proposals of [34] introduced 

the selection of two new balanced RNS bases that are well-suited for Montgomery multiplication. In particular, 

they chose moduli that are well-formed, i.e. close to powers of 2, in order to simplify the reduction and base 

extension operations. They also designed efficient reverse converters to recombine residues that take advantage 

of this balanced structure. In FPGA experiments, their RNS Montgomery multiplier shows excellent speedup for 

large operand multiplication, with manageable hardware cost. The research proposed in [35], develops a Block-

Parallel approach to exponentiation using Intel AVX-512 and demonstrates its benefit not only for speed but also 

for fault attack countermeasures. The proposal introduces the Block Product Scanning (BPS) method (a 
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blockbased Montgomery multiply) which vectorizes big-integer ops. On an Intel Xeon, their implementation 

achieved 1.5× higher RSA throughput than GMP 6.1.2 for 2048-bit exponentiation and 1.9× faster RSA 

decryption compared to OpenSSL, thanks to AVX-512 parallelism. There is also ongoing work in designing 

application-specific integrated circuits for tasks like the Verifiable Delay Function (VDF), which essentially 

requires computing a2t mod N squaring operations [36]. Researchers have in this case [36] proposed pipelined 

squaring units and even ASIC prototypes that perform a 2048-bit modular squaring in under 100 ns, targeting 

VDF use-cases. These specialized designs often use high-radix Montgomery multipliers and deep pipelines to 

churn out one modular square per clock cycle after latency.  Resource-constrained devices (IoT sensors, 

microcontrollers) may not be able to perform 2048-bit exponentiations quickly. One approach highlighted in 

recent work is the secure outsourcing of modular exponentiation to a more powerful server. Protocols have been 

proposed for an IoT device to transfer RSA computations to the cloud, for which a vulnerability is shown in [37] 

and a fix is provided. The improved protocol of [37] ensures that the untrusted server cannot learn the secret 

exponent or result, by blinding intermediate values, and is resilient against known lattice attacks. The overall 

performance remains unaffected by this correction and hence the computational effort benefit is achieved with 

better security. This approach represents a workaround for a cryptographic solution to the performance problem, 

since it allows small devices to benefit from big accelerators in the cloud. When combined with algorithmic 

improvements, whereby the cloud server can use all the methods discussed above, secure cloud computations can 

make heavy cryptography feasible in lightweight environments without sacrificing privacy. Finally, research has 

also been directed toward algorithmic developments, such as the efficient implementation of Montgomery 

multiplication and Barrett reduction algorithms. In [38], a high-efficiency digital signal processing framework is 

explored, aimed at optimizing modulo calculations, emphasizing significant improvements in efficiency through 

these established methods. By formulating optimizations specifically for lattice-based cryptography, the authors 

demonstrated the applicability of this approach to postquantum systems.  

C. CONTRIBUTIONS OF THE PRESENT WORK  

The principal disadvantage of the existing methods for accelerating multiplicative operations on Galois fields is 

that they do not use the possibilities of simultaneous multiple digit processing. The possibility of using this reserve 

for increasing the speed of computation is due to both the specific features of operations on Galois fields and the 

extension of the Montgomery reduction operation.  In the following sections, existing techniques will be presented 

in detail for accelerated calculation of the square of a number and the accelerated calculation of the multiplication 

with a constant number in Galois fields. Following that, based on these accelerated procedures for squaring and 

multiplication, an innovative proposed procedure will be developed for the execution of exponentiation in the 

Galois fields i.e., for the calculation of A|E rem P.    

III. ACCELERATED SQUARING METHOD IN GALOIS  

FIELDS WITH MONTGOMERY GROUP REDUCTION  

When using both versions of the classical algorithm for exponentiation on Galois fields of long numbers, the 

squaring operation takes 2/3 of the volume of all calculations. Therefore, to accelerate exponentiation on Galois 

fields, it is necessary to investigate the possibilities of reducing the time required for performing squaring 

operations.  

The principal resources that may be used for the reduction of the number of logical operations for the squaring in 

the Galois fields are:  



International Journal of Intelligent Systems and Computing, Volume 13 (2), 2025 | ISSN: 2997-0849  

   

Original Article   
 

   ©2025 Noland Journals    

7     

- the Factor Square Property (FSP),   

- application of the Montgomery reduction modified for Galois fields,  

- Group processing of bits when performing Montgomery reduction.  

The property of the calculation of the square of a polynomial of A, is that this operation is actually equivalent to 

inserting zeros between the bits of the number A. Indeed, the polynomial product is the XOR of the logical 

products of all possible pairs of bits of the factor codes, multiplied by the corresponding power of two. If the 

factors are equal to each other, then the logical product of a pair of different bits is included in the XOR twice 

and, consequently, it is cancelled out. Therefore, the polynomial square can be represented as:  

n 1 n 1 n 1 

A  A  ai a j 2i  j  a j   22  j       (6)  

j 0 i 0 j 0 

For example, if А=9=1001 2, then A A=10000012=65. Accordingly, the implementation of polynomial squaring 

becomes significantly simpler and faster than calculating the square in traditional algebra. Polynomial squaring 

can hence be performed in software using 2 n shift operations of the n-bit code A. After calculating the 

polynomial square, it is necessary to perform its reduction, that is, the calculation of the remainder of the division 

by the field generator polynomial – P. Direct execution of the polynomial division operation of the 2 n -bit code 

of the polynomial square by the field generator polynomial requires n shift operations of the n-bit code P and n/2 

XOR operations on n-bit codes. Thus, sequential execution of polynomial squaring and reduction of the obtained 

result requires 3.5 n logical operations on n-bit codes. A more efficient implementation of squaring on Galois 

fields is achieved by combining the bit expansion of the number a is being squared with the reduction. Such a 

combination is possible only when performing the reduction from the lowest bits that is, using the Montgomery's 

technique [5]. In order to attain this, the technique which is used for modular reduction in ordinary algebra, must 

be updated in order to encompass the features of reduction on finite Galois fields. For the implementation of the 

combination of polynomial squaring and modified Montgomery reduction on the Galois field, a procedure for fast 

calculation of A2 rem P is proposed. In the developed procedure, the code of the n-bit number A, which is raised 

to the power of E on the finite Galois field GF(2n), is divided into two fragments: the n/2 least significant digits 

form the first fragment A1, and the n/2 most significant digits of the number A form the second fragment A2. The 

procedure for the combined polynomial squaring and modified Montgomery reduction on the Galois field 

involves the following steps:  

1. The initial value of the variable R of the current result and the index j of the loop are set to zero: R=0 and 

j=0.  

2. If the index j of the loop is even, that is j mod 2=0, then the least significant digit a10 of the code A1 is 

logically added to the least significant bit of R, and the least significant bit a20 of the code A2 is logically added 

to the most significant (n+1)th bit of R=R  a10   a20 2n.  

3. If the least significant digit of R is equal to one: r0 =1, then the generator polynomial of the field P is 

logically added to P:  R = R  P.  

4. The code R is shifted to the right by one bit: R>>=1.  

5. If the index j of the loop is even, that is, j mod 2=0, then the codes A1 and A2 are shifted to the right: 

A1>>=1 and A2>>1.  

6. The index j of the loop is increased by one. If j<n, then a return to repeat Step 2 is performed.  
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7. End of process. The value R = A A  Q-1 rem P is obtained, where Q-1 is the multiplicative inverse of the 

polynomial of Q(x)=xn in the Galois field. The polynomial P(x) is formed, i.e. Q Q-1 rem P =1.   

In order to obtain the correct value of the squaring of the number A in the Galois field, the result of the above 

procedure must be multiplied by Q:   

R = R Q rem P                                (7)  

However, the correction is not performed during the exponentiation.  

The proposed procedure for the squaring in the Galois field is illustrated by an example of the squaring of a 

number   

A = 910 = 10012                                 (8) In the Galois field, the polynomial             

P(x) = x4+x+1                                        (9)  

is formulated, that corresponds to the number   

P=100112=1910; n=4,                                 (10)  

And   

Q=100002=16, Q-1 =1410 =11102.                         (11) Indeed,   

Q Q-1 rem P = 16 14 rem 19 = 1.                          (12) The actual result is then,  

R =A A rem P = 9 9 rem 19=13.                         (13)  

The step-by-step modification of the variables R and A during the execution of the proposed procedure of the 

calculation of the square in the Galois field for A = 9 with the formulation of the polynomial P(x) = x4+x+1 is 

presented in Table 1.  

The result R is the product A A Q-1 rem P = 9   9  14 rem 19 = 10. In order to obtain the actual result of the 

squaring of the number A=9 in the Galois field it is necessary to multiply R with the value   

Q: R  = R  Q rem P = 10 16 rem 19 = 13.             (14)  

The dynamic progress of variables R and A during the execution of the calculation of the square of A=9 in the 

Galois field, from the formulated polynomial P(x) = x4+x+1 is illustrated in Table 1 below.  

Table 1. Evolution of the calculation for A = 910  

j  Transformation R  Transformation A  

R  R=R a10 a20 2n  R=R P  R>>=1  A2=102  A1=01 2   

0  0  R=0 1  0=1  00001 10011=10010  01001  01  00   

1  10010  -  01001 10011=11010  01101  -    

2  01101  01101 10000 =11101  11101 10011=01110  00111  00  00   

3  00111    0111 10011=10100  01010  -    

 The execution of the above procedure involves performing n/2 shifts of the two halves A1 and A2 of number A, 

n shifts of number R, and, on average, n/2 logical summation operations (XOR). All these operations are 

performed on n-bit codes. Given that n is much greater than the processor capacity r: n>>r, each of the operations 

described actually requires performing n/r processor instructions. The remaining actions required by the proposed 

procedure, such as R = R  a10  a20  2n or testing the R bits, are performed in 1-2 processor operations, i.e. in 

significantly less time. Thus, the total number of logical operations on n-bit codes required to implement the 

proposed squaring procedure on the Galois field is 2 n. This is significantly less than the similar figure of 3.5 n 

for separate execution of polynomial squaring and reduction on the Galois field. One particular characteristic of 
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the proposed method for accelerated squaring on the Galois field, is that the modification of the least significant 

digit of the intermediate result R occurs in every second cycle (for even values of j) and this modification concerns 

only one bit. This enables possibilities for implementing group reduction on the Galois field, in which the shift to 

the right is performed immediately by k digits. In turn, this allows to reduce the time spent on reduction by k 

times and, thus, significantly speed up squaring on Galois fields. In order to implement this possibility, it is 

necessary to logically add to the current code R such a linear combination   

L(P) = k-1 2k-1  P + k-2 2k-2  P+…+ 1 2  P+ 0  P,      (15)  i {0,1,…,k-1}: i {0,1}, which ensures 

that the k least significant bits of the logical sum R L(P) are equal to zero. It will be shown that such a linear 

combination L (P) always exists for any value of the code   

R = rn 2n + rn-1 2n-1+…+rk-1 2k-1 +…+ r1 2 + r0,       (15) where j  {0, 1,…,n}: rj {0,1}, provided that the 

generating polynomial P(x) is prime.  Since P(x), the polynomial generated in the Galois field is prime, then it 

necessarily contains a non-zero component at x0 (otherwise, it would necessarily be divisible by the polynomial 

V(x) = x, i.e., it would not be prime). This implies that the number P that corresponds to the generator polynomial 

P(x) is odd, i.e., its least significant bit p0 is equal to one: p0=1. If the least significant bit r0 of the code R being 

reduced is equal to one, then its logical sum with P in the least significant bit is zero. Thus, in order for the logical 

sum R L(P) to have zero in the least significant bit, it is necessary that 0 = r0. Similarly, if the second bit of the 

logical sum R 0 P is equal to one, then for 1=1 the bit of the logical sum R 0 P 1 P 2 with the same 

name is equal to zero. This means that it is always possible to make the two least significant bits of R   0  P 

 1  P  2 equal to zero: for this it is necessary that 1 = r1  0  p1. Reasoning in a similar manner, it is 

easy to show that in order for the three least significant bits of the logical sum R 0  P 1  P 2 2  P 22 

to be equal to zero, it is sufficient to satisfy the condition 2=r1 0 p1 1 p2.  

Continuing the above reasoning, we can come to the conclusion that it is always possible to choose binary 

coefficients 0, 1, …, k-1 in such a way that the k least significant bits of the logical sum  

R  0  P  1  P  2  2  P  22  …  k-1 P  2k-1 (16) are equal to zero. The proof of the above 

statement enables the organization of a simultaneous Montgomery reduction immediately over k bits of the current 

result when squaring on Galois fields. Subsequently, due to this, it hence becomes possible to significantly speed 

up the fundamental operation of exponentiation on Galois fields. For this reason, it is proposed that, for a given 

polynomial P(x) formulated in the Galois field and for given values rk-1, rk2, …, r1, r0, it is possible to obtain as a 

result the corresponding values k-1, k-2, …, 1, 0 with a recursive application of the approach outlined above. 

Hence, for each of the possible of the 2k-1 combinations (excluding zeros) of the k bits of the code rk1, rk-2, …, 

r1, r0, the values of the sums L(P)= k-1 2k-1 P + k2 2k-2 P+…+ 1 2 P+ 0 P are derived, for which the 

k least significant bits of L(P) are equal to the corresponding combination. The results of the calculation are 

presented in the form of the 2k-1 table of values T(1), T(2),…,T(2k-1). The value of k is selected to be even and 

such that n is exactly divisible by k. The above method is illustrated according to the following example. Let n=8 

and the Galois field formulated by the polynomial P(x)=x8+x7+x6+x5+x3+x2+1. For n=8, the number Q=2n=256 

and the multiplicative inverse Q-1 that is produced with the given polynomial P(x) is Q-1=127. Then indeed, 

256 127 rem P(x)=1.  This polynomial corresponds to the number P=1110111012 = 47710. The four least 

significant digits for this number (for k=4) of this number are: p0=1, p1=0, p2=1 και p3=1.   

For each of the 16 possible values of r3 8+r2 4+r1 2+r0, the values of the coefficients 0, 1, 2 and 3 of the 

linear combination L(P) can be calculated based on the above considerations. The values of the linear 
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combinations calculated in this way are given in Table 2. This table summarizes values of the pre-calculated 

results for the Galois field with polynomial P(x)=x8+x7+x6+x5+x3+x2+1 for k=4.  

Additionally, in order to quickly formulate the k bits of a polynomial for the calculation of the square of k/2-bit 

packets of a number via the insertion of zeros between the digits of the binary representation, the formulation of 

table Z is proposed. This table contains in each case, polynomials with squares obtained by the insertion of for 

each one of the 2k/2-1 codes of k/2-bits. Specifically for, k=4 the table Ζ consists of three rows: 

Z[1]=Z[012]=00012, Z[102]=01002 and Z[112]=0101. These values may be identified as a subset of the rows of 

Table 2.  

All the steps described above, depending on the polynomial P(x) that has been formulated and the number k of 

the concurrently processed bits, need to be performed once for actual cryptographic data protection systems, since 

the polynomial is part of the public key.  

Table 2. Pre-calculated results for P(x) and k=4  

r3r2r1r0  T  r3r2r1r0  T   

    1000(8)  3816 10 =1110 1110 10002 

0001(1)  211310=1000 0100 00012  1001(9)  170510 = 0110 1010 10012 

0010(2)  341010=1101 0101 00102  1010(10)  95410 = 0011 1011 10102 

0011(3)  129910=0101 0001 00112  1011(11)  306710 =1011 1111 10112 

0100(4)  190810=0111 0111 01002  1100(12)  246010 =1001 1001 11002 

0101(5)  389310=1111 0011 01012  1101(13)  47710= 0001 1101 11012  

0110(6)  259810=1010 0010 01102  1110(14)  123010 = 0100 1100 11102 

0111(7)  61510=0010 0110 01112  1111(15)  321510 = 1100 1000 11112 

 It is proposed to calculate the square A A rem P of the number A in the Galois field according to the following 

sequence:  

1. The cycle count j is initialized:  j=1. The code of the result is also initialized (n + k)- bit R: R=0.  

2. The value of R is shifted by k bits: R>>=k. The most significant k bits of R are assigned values from the 

table, the index of which is determined by the least significant k/2 bits of А: Z(ak/2-1, ak/2-2, …, a1, a0).  

3. If the least significant k bits R:  rk-1, rk-2, …, r0 are equal to zero – go to Step 5. Otherwise R is logically 

added upon the code T[rk-1, rk-2, …, r0] : R = R  T[rk-1, rk-2, …, r0].  

4. A shift of A is performed by k/2 bits: A>>=k/2. Increment  

the counter j:   j=j+1. If j  2 n/k, then return to Step 2.  

5. End of process. The value R = A  A  Q-1 rem P is obtained  

The proposed procedure for the accelerated squaring in the Galois field is illustrated using the following example. 

Consider squaring the number А=15910 = 1001 11112 in the  

Galois field with the forming polynomial  

P(x)=x8+x7+x6+x5+x3+x2+1 for which and for k=4, Table 2 is constructed. The true value of the result A A rem 

P = 159  159 rem 477 = 11101112 = 231.  

The dynamic progress of R and q in the steps j of the proposed procedure for squaring A A rem P for А = 159 

and P = 477 for k = 4, is shown in Table 3.  
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The result R=236 is different from the correct result and is the product A A Q-1 rem P = 159 159 127 rem 

477. In order to obtain the correct result R  for the number A=159 in the Galois field, it is necessary to perform 

the Montgomery correction, that is to multiply the obtained result R by the value of Q:   R =R Q rem P = 

236 256 rem 477 = 231.  

Table 3. A A rem P for А = 159, P = 477, k = 4.  

j  Operations on R  Operations on А A>>=2  

Logical Addition (XOR)  Shift (R>>=4)  

0  0000 0000  0000 0000 0000  1001 1111  

1  -  0101 0000 0000  0010 0111  

2  -  0101 0101 0000  0000 1001  

3  -  0001 0101  

0101= 341  

0000 0010  

4  R=R T[5] =341 3893 = 3680=1110 

0110 0000  

0100 1110  

0110 = 1254  

0000 0000  

5  R=R T[6] =  

1254 2598= 3776=     

1110 1100 0000  

0000 1110  

1100 = 236  

  

 During the exponentiation in the Galois field in information security systems, the actual word length n (typical 

values of which are 2048 or 4096) of the operands is one to two orders of magnitude higher than the bit capacity 

of the processor. Consequently, for the estimation of the number of operations required for the squaring, one can 

ignore the operations concerning operands the size of which is smaller than the capacity of the processor and 

consider only operations on long operands i.e., operands for n bit operations. The performance of the above 

procedure involves the execution of n/k shifts of the number A, 2 n/k 2 shifts of the number R and n/k logical 

additions (XOR). Hence the total of logical operations required for the application of the proposed procedure of 

the squaring in the Galois field is 4 n/k. This implies that the use of the use of the reduction of the Montgomery 

group with the concurrent k bit processing, renders feasible the acceleration of the squaring in the Galois fields 

by a factor of 0.75 k times.  

IV. ACCELERATED MULTIPLICATION BY A CONSTANT NUMBER ON GALOIS FIELDS WITH 

MONTGOMERY GROUP REDUCTION  

When using the Montgomery reduction as modified for the Galois fields, one may use the accelerated 

multiplication in the  

Galois fields i.e., the calculation A B rem P, where  

 A=an-1 2n-1+an-2 2n-2+…+a2 22+a1 2+a0, B=bn-1 2n-1+bn-2 2n-2+…+b2 22+b1 2+b0,         (17)  

i {0,1,…,n-1}: ai,bi {0,1}.  

 Similarly to the proposed method for fast squaring, multiplication in the Galois fields may be accelerated via:  

• The application of the Montgomery reduction as modified for the Galois fields  

• Concurrent processing of digits during the execution of the Montgomery reduction.  

For the purpose of immediately reducing the q least significant bits of the intermediate result using the 

Montgomery technology during the calculation of the product, it is recommended to use the pre-calculation tables. 
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The logical addition of the values of the table to the intermediate result, allows the assignment of zeros to its q 

least significant bits. However, in contrast to the squaring, these values depend not only on the produced 

polynomial P(x) of the Galois field, but also on the multiplier A. It is therefore necessary to perform preliminary 

multiplications before every calculation of the exponent A|E rem P.  

In every step of the multiplication for the intermediate result R, a logical addition of the code Y = bq-1  2 q-1  

A + bq-2  2q-2  A +…+ b1  2  A + b0  A is performed, that depends on the q least significant bits bq-1, bq-2, 

…, b0 of the multiplier Β and the multiplicand Α. The compensatory code D = vq-1 2q-1 P + vq-2  2q-2  P +…+ 

v1  2 P + v0 P of the Montgomery reduction has to be added upon the logical sum R Y, that is selected so 

that the q least significant bits of the sum R Y D are equal to zero. In the previous section, it was shown that 

the compensatory code D exists for any value q of the least significant bits of the logical sum R Y. From this it 

follows that for given values of rq-1, rq-2, …, r1, r0  of the q least significant bits of the intermediate result R and of 

the q least significant bits bq-1,bq-2,…,b0 of the multiplier Β, there always exists such a set vq-1,vq-2,…,v0, for which 

the q least significant bits of the logical sum R Y D are equal to zero. Consequently, the numbers of the rows 

of the table W of the pre-calculated values are determined by the given codes rq-1, rq2 , …, r1, r0  and bq-1, bq-2,  

…,b0 and the values of the table contain the code D Y, For which the q least significant bits of the logical sum 

R Y D are equal to zero. Hence the value of the 2 q bits of the j th line of the table are formulated as:  

q 1 q 1 

j  ri 2q i  bl   2 l 
i 0 l 0                       (18)  

 For example, for n = 6, q = 2, A = 57 10 = 1110012 and the polynomial formulated in the Galois field is                       

P(x) = x 6 + x4 + x2+x+1                            (19) which corresponds to the number P =   87 10 = 10101112. The 

precalculated values of D Y for all the possible values of the 2-bit codes r 1, r0 and b1, b0 for A = 57 and P = 87 

are presented in Table 4 below. On algorithmic level and the general case, this table will be referred to as table 

W.  

 Table 4. Pre-calculated values for A = 57 and P = 87  

r1,r0  b1,b0  j  D  v1,v0  r1,r0  b1,b0  j  D  v1,v0  

0 0   0 0  0   0    0 0  1 0   0 0  8  17410 =   

1010 11102    

 1 0   

0 0   0 1  1  19210 =  1100 

00002  

 1 1  1 0   0 1  9  11010 =  0110 

11102  

 0 1   

0 0   1 0  2  22010 =  1101 

11002  

 1 0  1 0   1 0  10  11410 =  0111 

00102  

 0 0   

0 0   1 1  3    2810 =  0001 

11002   

 0 1  1 0   1 1  11  17810 =  1011 

00102  

 1 1   

0 1   0 0  4    5710 =  0011 

10012  

 1 1  1 1   0 0  12    8710 =  0101 

01112  

 0 1   

0 1   0 1  5    3710 =  0010 

01012  

 0 1  1 1   0 1  13  15110 =  1001 

01112  

 1 0   



International Journal of Intelligent Systems and Computing, Volume 13 (2), 2025 | ISSN: 2997-0849  

   

Original Article   
 

   ©2025 Noland Journals    

13     

0 1   1 0  6  22910 =  1110 

01012  

 0 0  1 1   1 0  14  13910 =  1000 

10112  

 1 1   

0 1   1 1  7  24910 =  1111 

10012  

 1 1  1 1   1 1  15    7510 =  0100 

10112  

 0 0   

 The procedure required is the following:  

1. The cycle counter i is initialized as   i=1;  

Similarly, the (n+k)-bit result code R:  R =0.  

2. For the values of the q least significant bits of R and the q least significant bits В using Equation 

(18) the corresponding line number j within the pre-calculated table W is determined.  

3. The value W[j] of the logical addition is read from the table and hence R: R = R  W[j].  

4. The values R and B are shifted by q bits:   R>>=q. B>>=q.  

The cycle counter is incremented i:   i=i+1.  

If i n/q, return to Step 2.  

The operation of the described multiplication procedure with concurrent processing (q=2) in the Galois fields is 

illustrated via the example of the multiplication А=57 by B=41. The polynomial   

P(x)=x6 + x4 + x2+x+1                                (20) is created. For this particular Galois field   

P = 87, Q = 26 = 64, and Q-1 = 9.                             (21) The correct value of the product is obtained as 57  41 

rem 87 = 18. The calculations of R and A during the steps for all i of the procedure described for the accelerated 

multiplication in the Galois fields is given in Table 5. This table illustrates in stepby-step form, the evolution of 

the values of R and A for each iteration of the execution of the calculation of A B rem P for А = 57, B = 4110 = 

1010012 and P = 87 for q = 2  

Table 5. Iterations for A = 57 and P = 87  

i  r1 r0  b1 b0  j  W[j]  Operations in R  Shift B  

B >>= 2  R = R  W[ j ]  R >>= 2  

0  0 0  0 1  1  192  0  192  = 19210 = 1100 

00002  

11 00002= 4810  1010   

1  0 0  1 0  2  220  48  220 = 23610 = 1000 

11002  

11 10112= 5910  0010   

2  1 1  1 0  14  139  59  139 = 17610 = 1011 

00002  

10 11002= 4410  0000   

 The obtained result R = 44 is different from the true result A  B  Q-1 rem P = 57  41  9 rem 87. In order to 

obtain the result R  it is necessary to perform the Montgomery correction i.e., to multiply the result R by the 

value Q:   

R =R  Q rem P = 44  64 rem 87 = 18            (22)  

The immediate execution of one cycle of the described procedure requires one logical addition and two shift 

operations. Hence the total number of operations for the application of the procedure for multiplication is 3 n/q.  

V.  ACCELERATED EXPONENTIATION IN GALOIS FIELDS Based on the accelerated procedures for 

squaring and multiplication that were developed in the previous sections, the following innovative procedure is 

proposed for the execution of exponentiation in the Galois fields i.e., for the calculation of A|E rem P.   
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The creation of the polynomial P(x) for most cryptographic data protection mechanisms based on Galois fields, 

is part of the public key and changes very rarely. This implies that the table T of the pre-calculations is 

predetermined, may be stored in memory and the time required to complete it is not considered a computational 

complexity during the exponentiation of a particular number A.  

Before performing the exponentiation, the initial values of the result   

R=Q rem P= xn rem P                             (23)  

And the parameter   

C = Q  Q rem P = x2 n rem P   (24) are also calculated. These values only depend on the produced polynomial 

of the Galois field and need to be once together with the table T of pre - calculations.   

The immediate procedure for the calculation of A|E rem P in the proposed scheme, starts with the formulation of 

the table W of pre – calculations, that is used for the accelerated multiplication.   

The size of this table is 22 q - 1. For each of the possible values bq-1, bq-2, …, b0 the values   

Y = bq-1 2q-1 A + bq-2 2q-2  A +…+ b1 2 A + b0 A      (25) are calculated, with the operations required 

being q-1 shifts and 0.5 q2 logical additions.   

For each of the possible values rq-1, rq-2, …, r1, r0, a linear system of Boolean equations is solved, that renders 

possible the determination of the values vq-1, vq-2, …, v0 for which the q least significant bits of the sum R   Y 

D are equal to zero. The mean number of operations for the determination of a value v is 0.5 q. Consequently, 

the total number of logical additions required for the determination of the values vq-1, vq-2, …, v0 is 0.5 q2.  

Hence the construction of the table W of the pre-Calculations, requires 2q  (q + 0.5  q2) logical operations for 

the determination of all possible Y and 2q-1 q2 logical operations for the determination of vq-1, vq-2, …, v0. Taking 

into account the function for the formulation of W[j] = Y  D for all rows of the table, the total number TW of 

logical operations for constructing this is table is determined by the formula:  

TW  22 q (q  0.5 q2)  2q (q  0.5 q2)  

 (q  0.5 q2) (22 q  2q)          (26)  

For the description of the proposed procedure for the fast exponentiation in Galois fields, SM(A,k) denotes the 

expanded procedure for the fast squaring of a number A in a Galois field with Montgomery reduction group k 

bits, that formulates A A Q-1rem P. Similarly, MM(A, B, q) denotes the expanded procedure for accelerated 

multiplication in the Galois field of the numbers A and B with the (q-bit) Montgomery reduction group A  B  

Q-1 rem P. The algorithm can then be described as follows:  

For the selected q and the given Α, a table W of preliminary calculations is formulated.  

1. Calculate G = MM (A,C,q).  

2. The number i of the current bit of the binary code of the exponent is set to n: i = n.  

3. Raise to the square of the current result R in the Galois field: R = SM(R, k).  

4. If the ith bit ei of the binary code of the exponent is equal to 1 ei  =1 : the current result R is multiplied by 

G using the procedure ММ: R=MM(R, G, q).    

5. If i > 0 the counter is decremented (i = i - 1) and the process returns to Step 4.   

6. The correct result R  is formulated as the multiplication of  

R with unity:  R  = MM(R, 1,q)  
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The proposed procedure is illustrated via an example of the exponentiation of the number A = 15910 to the 

exponent E =20310 = 1100 10112 in the Galois field, that is formulated by the polynomial P(x) = x8 + x7 + x6 + x5 

+ x3 + x2 + 1, corresponding to the number P = 477; n = 8. The correct result is 159|203 rem 477 = 69.   

For a single repetition and for a given constant polynomial P(x) the calculations R = Q rem P = xn rem P = 256 

rem 477 = 221 and C = Q  Q rem P = x2 n rem P = 216 rem 477 = 97 are performed. For the selected value of k, 

the tables T of preliminary calculation are created and stored.    

The process of the exponentiation begins immediately with the formulation of the table W of the pre-calculations 

(Step 1) and the calculation G=MM(159, 97, q) = 105 (Step 2).  

The dynamic evolution of the values of the current result during the execution of Steps 4 – 6 of the proposed 

procedure are presented in Table 6. This table illustrates the values of the pre-calculated results for the Galois 

field with polynomial P(x) = x8 + x7 + x6 + x5 + x3 + x2 + 1 for k = 4.  

According to Step 7 of the procedure, the obtained result R = 124 is corrected by multiplying with unity: R  = 

MM(R, 1, q) = MM(124, 1, q) = 69.   

It is apparent that for each of the n iterations of the described procedure for multiplication in the Galois fields a 

squaring with 4  n / k logical operations is required, and with probability 0.5, an additional multiplication with 

3 n/q logical operations is also required. Additionally, the formulation of the table W is performed before the 

repetitions that requires TW logical operations.  

Table 6. Steps 4-6 for A = 15910 and E = 20310   

i  ei  Evolution of R  

    Squaring  Multiplication in G   

8  1  SM(221,k) = 221  MM(221,105,q) = 105  

7  1  SM(105,k) =   28  MM(  28,105,q) =   65  

6  0  SM(  65,k) = 111    

5  0   SM(111,k) = 185    

4  1  SM(185,k) =   77  MM(  77,105,q) =  223  

3  0  SM(223,k) = 252    

2  1  SM(252,k) = 166  MM(166,105,q) =  250  

1  1   SM(250,k) = 3  MM(3,105,q) =  124  

  Hence the total number of logical operations TE required for the exponentiation in the Galois fields according to 

the proposed method is given by the formula:  

2 4 3 

TE  TW  n (  0.5  )  k q 
2 q q 2 2 4 1.5 

 (2  2 ) (q  0.5 q )  n (  ) 

 
k q              (27)  

The analysis of Equation (27) demonstrates that the principal factors for the reduction of the time required for the 

exponentiation is the number of bits concurrently processed during exponentiation - k and multiplication - q. It is 

also apparent that the dependence of TE on q possesses an extremum, i.e. there exists an optimal value q0 for 
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which TE is minimum. Given that q is integer, it is easy to determine the values of q0 for the corresponding values 

of n used in practice. For n = 1024 the optimal value q0 = 5 and for n = 2048 q0 = 6.  In this case the value of k is 

limited only by the available amount of memory for the storage of table Τ. Compared to the exponentiation in the 

Galois fields, with Montgomery reduction and without concurrent processing, the proposed procedure accelerates 

the computations by a factor of  the arithmetic value of which is determined by the formula:  

T0 4.5 n2   

TE 2 q q 2 2 4 1.5 

(2  2 ) (q  0.5 q )  n (  ) 
k q         (28)  

It is apparent that for q = 1, implying that the concurrent processing of a group of bits is only used for squaring, 

the value of  lies in the range 1.3 to 3. This means that the use of concurrent processing for the calculation of 

only a square in the Galois fields is ineffective. A much more significant acceleration in the calculation of the 

exponent in the Galois fields is obtained by the concurrent processing of the group of bits in both the squaring 

and the multiplication.  In order to verify the theoretical results for the achieved acceleration of the calculation of 

the execution of exponentiation in the Galois fields i.e., for the calculation of A|E rem P, suitable simulations were 

performed. Table 7 shows the experimentally obtained values of ξ of the acceleration obtained during the 

calculation of the exponent in the Galois fields for different values of k. This table illustrates the achieved 

acceleration that approaches an order of magnitude. It additionally highlights the dependence of the calculation 

of the acceleration  of the calculation of the exponent in the Galois fields on the group size k during squaring 

for the particular example of n = 2048 and q = 6.  

Table 7. Experimentally achieved acceleration.  

k    

6  4.78  

7  5.33  

8  5.81  

9  6.26  

10  6.67  

11  7.05   

12  7.41   

The analysis shows that the efficiency of the proposed approach tends to decrease with an increase in the value 

of k due to the exponential growth of the volume V of the memory required for the table:  

V  2k (n  k)  2q   (n  q) 

                    (29)  

Hence for k = 10 and q = 6, the required memory space is V= 274 KBytes, a value that is feasible in most 

processing platforms, including microcontrollers.  

VI. EVALUATION OF THE RESULTS  

Modular exponentiation in Galois fields is a fundamental operation in various cryptographic applications, 

particularly in public key cryptography. This operation is essential for algorithms such as RSA, Diffie-Hellman, 

and ElGamal, where it facilitates secure key exchanges and digital signatures [17, 18, 19]. The efficiency of 
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modular exponentiation directly impacts the performance of these cryptographic systems, as it often involves 

repeated modular multiplications, which can be computationally intensive [19]. Techniques like Montgomery 

multiplication have been developed to optimize this process, enhancing both speed and security by minimizing 

vulnerabilities to side-channel attacks [17, 18]. Furthermore, the implementation of modular exponentiation in 

hardware architectures is crucial for achieving high performance in realworld applications, ensuring that 

cryptographic protocols can operate securely and efficiently in various environments [22, 23]. Overall, the role 

of modular exponentiation in Galois fields is pivotal for maintaining the integrity and confidentiality of 

cryptographic communications.  The results of this ongoing research concern a range of mathematical operations. 

Firstly, a method for the fast calculation of the square in the Galois fields was theoretically founded, analyzed and 

developed. This method is based on the use of the polynomial property of the square, on the Montgomery group 

reduction in the Galois fields and on the use of preliminary calculations. It has been shown theoretically and 

experimentally that the use of the Montgomery group reduction with the processing of k bits concurrently, at the 

same time as using preliminary calculations, renders feasible the acceleration of the squaring in Galois fields by 

0.75 k times. Following that, another method was developed for the accelerated multiplication by a constant 

number in the Galois fields. The acceleration of the calculation of the result is attained via the use of group 

reduction and preliminary calculations that combine the operations of addition of the multiplicand and the 

Montgomery correction. This rendered possible the acceleration of the multiplication by q times when q bits were 

concurrently processed. Based on the proposed methods for fast squaring and multiplication by a constant factor, 

a procedure was developed for the exponentiation in the Galois fields. The theoretical analysis and the 

experimental studies have demonstrated that their use is capable of significantly accelerating the computational 

application of this operation that is important for cryptographic applications. The acceleration is significant, of 

approximately one order of magnitude. The memory requirements for the implementation of the algorithms were 

calculated to be of the order of 102 kilobytes for numbers of 2048 bits, a value that is feasibly available even in 

the case of microcontrollers. By increasing the speed at which the calculation of the exponent takes place, the 

word length of the numbers for which the exponent can be effectively calculated is implicitly also increased. 

Hence, by enabling the use of numbers with larger numbers of digits, the cryptographic stability of the algorithms 

increased, together with the associated level of security.   

VII. CONCLUSIONS AND FUTURE WORK  

A collection of accelerated calculations was proposed that leads to the acceleration of the calculation of 

exponentiation in Galois fields. Galois Fields exponentiation is an operation that is fundamental for a wide 

spectrum of cryptographic algorithms. The ability to accelerate this calculation facilitates the use of strong 

cryptographic security in devices where it is otherwise difficult. This includes portable terminals, IoT and 

microcontroller-based systems. The approach consists of two developed procedures, namely fast exponentiation 

to the square and multiplication with a constant number in Galois fields. The acceleration was developed using 

the properties of the second order polynomial, the Montgomery group reduction and precalculations. The 

proposed method was founded mathematically. The operation of the proposed method was illustrated by simple 

arithmetic examples that were described in detail. The development was further supported by results obtained an 

implemented computer simulation that was used for deriving experimental results on the achieved acceleration. 

It has been proved, both theoretically and experimentally that the proposed approach renders possible the 

acceleration of exponentiation in Galois fields by 5 to 7 times, in comparison with known methods. The level of 
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security provided by public-key cryptographic algorithms is completely determined by the word length of the 

numbers being processed. In practice, for many important applications, the number of bits is limited by the 

allowable time for the realization of the basic operation of public-key cryptography - exponentiation, the 

computational complexity of which has a cubic dependence on the length of numbers [13]. Accordingly, the 

achieved acceleration of exponentiation on Galois fields opens up opportunities for using numbers of larger digit 

capacity, i.e., increasing the level of resistance of publickey cryptographic algorithms.    The proposed scheme 

will be an enabling technology for future research, aiming to exploit this proposal for achieving high levels of 

security in applications where this is limited. An initial target the implementation modular exponentiation with 

group processing of the exponent code and the use of precalculations that depend on the number that is raised to 

a power. This will facilitate the proliferation of the use of high-level security cryptographic primitives in smart-

cards and microcontrollers with limited resources. A further application will involve the development of fast 

modular multiplication by a constant number, the length of which significantly exceeds the processor bit capacity, 

enabling increased levels of security in all types of processors. An additional target is the increasing the security 

level of the implementation of homomorphic encryption with modular exponentiation components. This will 

facilitate the accelerated implementation of this operation on IoT terminal devices via secure involvement of 

cloud computing resources. A further development will be the utilization of the proposed accelerated scheme for 

the definition of procedures for Fast Zero-Knowledge Identification Method, derived from of the well-known 

Schnorr schemes.  
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