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1.0  Introduction  

Statistical distributions are very useful in describing and predicting real data analysis. Although many 

distributions have been developed, there are always techniques for developing distributions which are flexible for 

fitting real data analysis. The Fréchet distribution has found wide applications in extreme value theory. Some 

extensions of the Fréchet distribution are suggested to attract representing various types of data. In this article, 

we introduce and study mathematical properties of a new model referred to as the Lehman type II Top-Leone 

Type II Fréchet distribution represents a special case of the new model. We hope that it will attract wider 

applications in many other areas of scientific research. Some extensions of the Fréchet distribution are available 

in the literature, see for example [1–6]. Consider the cumulative distribution function (cdf) and probability density 

function (pdf) Lehman Type II Type II Top-Leone Fréchet distribution with cdf given by   

𝐺(𝑥) = 1 − [1 − (𝑒−𝑏𝑥−𝜆  )2]𝑎𝑣,                                                              (1)   with corresponding pdf given by   

𝑔(𝑥) = 2𝑎𝑏𝑣𝜆𝑏𝑥−𝜆−1(𝑒−𝑏𝑥−𝜆  )2[1 − (𝑒−𝑏𝑥−𝜆  )2]𝑣𝑎−1,                        (2)  

where 𝑎, 𝜆 and 𝑣 are the two added shape parameters and 𝑏 is a positive scale parameter.  

The survival and the hazard function are given by   

𝑆(𝑥) = 1 − 𝐺(𝑥) = [1 − (𝑒−𝑏𝑥−𝜆  )2]𝑎𝑣                                                           (3)   

and   

 𝑔(𝑥) 2𝑎𝑏𝑣𝜆𝑏𝑥−𝜆−1(𝑒−𝑏𝑥−𝜆  )2 
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 ℎ(𝑥) = 𝑠(𝑥) = −𝑏𝑥−𝜆  )2)                                                    

(3.14)  

(1 − (𝑒 

  

The graphs of the cdf, pdf, s(x) and h(x) are respectively given in figures 1, 2, 3, and 4 respectively as  

  

 

 

Graph of distribution function of LT-2TLT-2F distribution 

 
  

Figure 1. Graph of the distribution function of LT-2TLT-2FD  

• Figure1 indicates that the Lehman Type-2 Top-Leone Type-2 Fréchet distribution has a proper probability 

density function which converges to one upon integration.  

  
Graph of density function of LT-2TLT-2F distribution 
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Figure 3.2. Graph of the density function of LT-2TLT-2FD  

• Figure 2 indicates that the Probability density function of Lehman Type-2 Top-Leone Type-2 Fréchet 

distribution is non-monotone.  

  

 
Figure 3. Graph of the survival function of LT-2TLT-2FD  

• Figure 3.3 indicates that the survival function of Lehman Type-2 Top-Leone Type-2 Fréchet distribution 

approaches zero as time increases.  

  



   International Journal of Nursing, Midwife and Clinical Practices, Volume 13 (2), 2025 | ISSN:  

3068-904X 

 
Original Article  

    

  ©2025 Noland Journals   

  

 
4   

 
Figure 4. Graph of the hazard function of LT-2TLT-2FD  

Figure 4 indicates that the shape of the hazard function of Lehman Type-2 Top-Leone Type-2 Fréchet distribution 

can be increasing, decreasing, non-monotonic and inverted bathtub failure rates.   

A statistical expression for the reversed hazard 𝛾(𝑥) and the cumulative hazard 𝐻(𝑥) functions is given by  

2𝑎𝑏𝑣𝜆𝑏𝑥−𝜆−1(𝑒−𝑏𝑥−𝜆  )2[1 − (𝑒−𝑏𝑥−𝜆  )2]𝑣𝑎−1 

 𝛾(𝑥) = 1 − [1 − (𝑒−𝑏𝑥
−𝜆  )2]𝑎𝑣                            

(5)  

and   

𝐻(𝑥) = 𝑙𝑜𝑔[𝐹(𝑥)] = 𝑙𝑜𝑔 (1 − [1 − (𝑒−𝑏𝑥−𝜆  )2]𝑎𝑣)                                        (6)  

  

3.0 Statistical properties of the 𝑳𝑻 − 𝟐𝑻𝑳𝑻 − 𝟐𝑭𝑫  The LT − 2TLT − 2FD  can be re-written to a reduced 

a model using generalized binomial series.  
∞ 

 𝑤𝑘,                                                                          (7)  
𝑘=0 

where, |𝑤| < 1, 𝑘 > 0. Now using the binomial series given in (7), The pdf of 𝐿𝑇 − 2𝑇𝐿𝑇 − 2𝐹𝐷 can be can be 

written as a mixture model as follows:  

[1 − (𝑒−𝑏𝑥−𝜆  )𝑖  

𝑖 
𝑖=0 

Consequently, the pdf of 𝐿𝑇 𝐹𝐷 is given as  

𝑔(𝑥) = 2𝑎𝑏𝑣𝜆 ,                                      (8)  
𝑖=0 

And can also be written as  
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𝑔(𝑥) = 2𝑎𝑏𝑣𝜆𝑖𝑏𝑥−𝜆−1𝑒−𝑏(𝑖+2)𝑥−𝜆  ,                                  (9)  

𝑖 
𝑖=0 

The expression given in (9) shows that the 𝐿𝑇 − 2𝑇𝐿𝑇 − 2𝐹𝐷 is an infinite mixture representation of the Fréchet 

distribution.  

3.33  Quantile function and random number generation for 𝑳𝑻 − 𝟐𝑻𝑳 − 𝑻𝟐𝑭𝑫  

The quantile function of a distribution can be used to investigate the theoretical aspects of the probability 

distribution, we can employ the use of the quantile function. Mathematically, the quantile function can be 

expressed in form of 𝑄(𝑢) = 𝐹−3(𝑢). Correspondingly, the quantile function of 𝐿𝑇 − 2𝑇𝐿 − 𝑇2𝐹𝐷 is obtained 

by inverting (1) as follows: 𝑢 = 1 − [1 − (𝑒−𝑏𝑥−𝜆  )2]𝑎𝑣  

By making u the subject of formular, we derive an expression for the quantile function of  𝐿𝑇 − 2𝑇𝐿 − 𝑇2𝐹𝐷 as  

 1 −1⁄ 

 𝑥𝑢 = (− 1⁄𝑏 [𝑙𝑜𝑔 (1 − (1 − 𝑢)1⁄𝑎𝑣) ⁄2]) 𝜆 ,                                                 (11)  

An expression given in (3.19) can be used for random number generation to validate the method of maximum 

likelihood used to obtain the value parameters of the distribution. The lower quartile (𝑞1), middle quartile (𝑞2) 

and the upper quartile (𝑞3)of the 𝐿𝑇 − 2𝑇𝐿 − 𝑇2𝐹𝐷 can be obtained by taking the values of 𝑢 = 0.25,0.5, and 

0.75 respectively in (3.19) as  

3.3 Moments of 𝑳𝑻 − 𝟐𝑻𝑳 − 𝑻𝟐𝑭𝑫  

Moments are very properties for any statistical investigation, most especially in many application areas. Suppose 

𝑋~𝐿𝑇 − 2𝑇𝐿 − 𝑇2𝐹𝐷 (𝑎, 𝑏, 𝜆, 𝑣),then many important features such as dispersion, skewness, measures of central 

tendency, and kurtosis of the 𝐿𝑇 − 2𝑇𝐿 − 𝑇2𝐹𝐷 model can be derived by using ordinary moments. The 𝑟𝑡ℎ raw 

moment of the 𝐿𝑇 − 2𝑇𝐿 − 𝑇2𝐹𝐷 model is obtained as  

                                                 

1 −1⁄ 

 𝑞1 = 𝑥0.25 = (− 1⁄𝑏 [𝑙𝑜𝑔 (1 − (0.75)1⁄𝑎𝑣) ⁄2]) 𝜆 ,                                                 (12)  

2 −1⁄ 

 𝑞2 = 𝑥0.5 = (− 1⁄𝑏 [𝑙𝑜𝑔 (1 − (0.5)1⁄𝑎𝑣) ⁄2]) 𝜆 ,                                                    (13)  

And   
3 −1⁄ 

 𝑞3 = 𝑥0.75 = (− 1⁄𝑏 [𝑙𝑜𝑔 (1 − (0.25)1⁄𝑎𝑣) ⁄2]) 𝜆 .                                                 (14)  
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𝐸  𝑥𝑟𝑔(𝑥)𝑑𝑥,                                                                         (15)  

Inserting (9) in (15), we obtain  

𝜇𝑟′ = 2𝑎𝑏𝑣𝜆  𝑥𝑟−(𝜆+1)𝑒−𝑏(𝑖+1)𝑥−𝜆  𝑑𝑥,                     (16)  
 𝑖=0 −∞ 

Letting 𝑦 = 𝑏(𝑖 + 1)𝑥−𝜆,  𝑥 = [𝑏(1 + 𝑖)]1⁄𝜆𝑦−1⁄𝜆,  𝑑𝑥 = −𝜆−1[𝑏(1 + 𝑖)]1⁄𝜆𝑦−1⁄𝜆−1𝑑𝑦, putting in (16), we have  

𝜇𝑟′ = 2𝑎𝑣𝜆  𝑥−𝑟⁄𝑏𝑒−𝑦  𝑑𝑦,                                (17)  
 𝑖=0 0 

Finally, we have,  

𝜇𝑟′ = 2𝑎𝑣𝜆  𝛤(1 − 𝑟⁄𝑏) ,       𝑟 < 𝑏.                               (18)  

𝑖=0 

Where 𝛤(1 − 𝑟⁄𝑏) is an incomplete gamma function. Expression for the mean (𝜇1′ = 𝜇) and the variance (𝜇2 = 

𝜇2′ − 𝜇1′ 2) is obtained by taking 𝑟 = 1 and 2, and is given as  
∞ 

𝜇 = 2𝑎𝑣𝜆  1⁄𝑏).                                         (19)  

𝑖=0 

and  

𝜇2 = 2𝑎𝑣𝜆  2⁄𝑏) 

𝑖=0 

.                                               (20)  

𝑖  

Further, one can determine the 𝑟𝑡ℎ central moment and 𝑟𝑡ℎ cumulant of X defined respectively by,  
 𝑟 𝑟−1 

 𝑗 𝑗𝜇𝑗,     𝜅𝑟 = 𝜇𝑟′ − ∑ (𝑟𝑗 −− 11) 𝜅𝑗𝜇𝑟′−𝑗,  

𝜇𝑟 = 𝐸 
 𝑗=0 𝑗=1 

With 𝜅1 = 𝜇. One can express several measures of skewness and kurtosis based cumulants (central moments)  

Consequently, an expression for the variance, skewness and the kurtosis can respectively, be obtained as follows 

𝜎  and 𝑘𝑢 = 𝜇4(𝜇2)−2 respectively. Where  
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𝜇𝑟 = 𝐸[(𝑥 − 𝜇1′ )𝑟], 𝜇3 = −3𝜇2′ 𝜇1′ + 𝜇3′ + 2(𝜇1′ )3 and 𝜇4 = 6(𝜇1′ )2𝜇2′ − 3(𝜇1′ )4 − 4𝜇3′ 𝜇1′ + 𝜇4′  

3.4 Moment generating function of 𝑳𝑻 − 𝟐𝑻𝑳𝑻 − 𝟐𝑭𝑫   

The moment generating function (𝑀𝐺𝐹) of a random variable X sometimes gives an alternative method that can 

be used in describing the characteristics of a distribution. Mathematically, the 𝑀𝐺𝐹 is defined as  
 ∞ 𝑟 

ℳ𝑋(𝑡) = 𝐸(𝑒𝑡𝑋) =𝐸(𝑋𝑟).                                                                              (21) ! 
𝑟=0 

Putting (18) in (21) for 𝐸(𝑋𝑟) for 𝐿𝑇 − 2𝑇𝐿𝑇 − 2𝐹𝐷 , we obtain  

ℳ𝑋(𝑡) = 2𝑎𝑣𝜆  𝛤(1 − 𝑟⁄𝑏).                (22)  

𝑖=𝑟=0 

3.5  Entropies 𝑳𝑻 − 𝟐𝑻𝑳𝑻 − 𝟐𝑭𝑫  

The Rényi entropy of a random variable X with density function 𝑓(𝑥) can be described as a measure of variation 

off uncertainty or randomness and its defined (for 𝜁 > 0 and ζ≠ 1) as;  

𝐼𝑅  𝑙𝑜𝑔[𝑍(𝜁)],                                                              (23)  

1 − 𝜁 

where   

𝑍 𝑑𝑥                                                                                      (24)  

Inserting (2) in (24), we have  
𝜁 

𝑍𝑎𝑏𝑣𝜆𝑏𝑥−𝜆−1(𝑒−𝑏𝑥−𝜆  )2[1 − (𝑒−𝑏𝑥−𝜆  )2]𝑣𝑎−1] 𝑑𝑥                (25)  

Upon simplification, we obtain  

(𝜆 + 1)(1 + 𝜁) 

𝑍(𝜁) = 𝑛𝑗𝛤 (1 − ),                                                      (26)  

𝜆 

where  

𝑛𝑗 = 2𝜁𝑎𝜁𝑏𝜁𝜆𝜁−1𝑣𝜁 𝑗  
𝑗 

Putting (26) in (23), we generate an expression for the Rényi entropy of 𝐿𝑇 − 2𝑇𝐿 − 𝑇2 − 𝐹𝐷 as  

 1 (𝜆 + 1)(1 + 𝜁) 

𝐼𝑅(𝜁) =  𝑙𝑜𝑔 [𝑛𝑗𝛤 (1 − )].                                                      (27)  

 1 − 𝜁 𝜆 

∑ 
𝑡 

𝑟 
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3.40  Order statistics  

Given 𝑥1, 𝑥2, 𝑥3 . . . , 𝑥𝑛 as a random sample having CDF 𝐹(𝑥). Let 𝑋1:1, 𝑋2:𝑛, 𝑋3:𝑛, . . . , 𝑥𝑛:𝑛 is the ordered sample 

of size 𝑛, then the density of 𝑗𝑡ℎ order statistics is given as  
𝑛−𝑟 
∗ ∑(−1)𝑖 (𝑛 − 𝑟) 𝑓(𝑥)𝐹(𝑥)𝑖+𝑗−1 ,                                                       (28)  

𝑔𝑗:𝑛(𝑥) = 𝑊 

𝑖 
𝑖=0 
𝑛! 

Where 𝑊 .  

Putting (1) and (2) in (28), followed by simply algebraic manipulation gives  
𝑛−𝑟 

 1 𝑛 − 𝑟 𝑖𝑙 

 ) (𝜆 𝜆 ) (𝜆𝑙 + 𝑘) ϛ𝑘⁄𝜆   𝑔𝑗:𝑛(𝑥) = 2𝛼𝜌ϛ ⁄𝜆𝑊∗ ∑ (−1)𝑖+𝑘+𝑚 () (

 𝑖 𝑘 𝑙 𝑚 
𝑖=𝑘=𝑙=𝑚=0 

                              × ϛ̅𝑙𝑥−(𝜌+1)𝑒−(𝑚+1)𝛼𝑥−𝜌.  

4.0  Real Data Applications for 𝑳𝑻 − 𝟐𝑻𝑳𝑻 − 𝑭 Model  

To demonstrate the flexibility proposed family of distributions, -2*log-likelihood statistic (−2𝑙), Akaike 

information criterion (𝐴𝐼𝐶 = 2𝑝 − 2𝑙), Consistent Akaike information criterion (𝐶𝐴𝐼𝐶 = 
𝑝(𝑝+1) 

𝐴𝐼𝐶 + 2 ) and Hannan–Quinn information criterion (HQIC) are calculated for 𝐿𝑇 − 𝐸𝑇𝐿𝑇 − 
𝑛−𝑝−1 

2𝐹 model and its sub-models, where 𝑛 is the number of observations, and 𝑝 is the number of estimated parameters. 

The goodness-of-fit statistic, Kolmogorov Smirnoff (𝐾), Cramer–von Mises (𝐶𝑉), and the probability value are 

also presented in the Table. The best model corresponds among the class considered is the model having minimum 

value AIC, HQIC, CAIC, K, and CV and the largest probability value as the best model. In this study, numerical 

results (of maximum likelihood estimates and goodness of fit criteria) are calculated by using the goodness.fit (.) 

command in the Model Adequacy package available in R language. The AIC, CAIC, HQIC, CV, 𝐾 and 𝑃 are 

given for the sub-models Lehman Type-2 Top-Leone Type-2 Inverse Exponential (LT-2TLT-2IE), Lehman Type-

2 Top-Leone Type-2 Inverted Weibull (LT-2TLT-2IW), Type -2 Top-Leone Frechet (T-2TLF), Lehman Type-F 

(LT-2F), and Frechet distribution.  Two data applications are used to show how good the developed is in modeling 

lifetime data.  

The data represent the remission times (in months) of a random sample of 128 bladder cancer patients. For 

previous study see Lee and Wang (2003). The Exploratory data analysis for the cancer data I of data is given in 

Table 4.1, the Total Time on Test (TTT) plot is given in Figure 5, Tables 1, 2 and 3 gives the exploratory data 

analysis for the cancer data, parameter estimates of the model and the model’s measures of goodness of fit 

respectively.  
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kernel density of cancer data 

 
N = 128   Bandwidth = 2.161 

  

Figure 4.1: Kernel density plot for cancer remission time data  

  

 
i/n 

  

  

Figure 4.2 TTT plot for cancer remission time data  

Table 1  Exploratory data analysis of cancer data  

𝑛  𝑞1  mean  𝑞3  Range  median  variance  Skewness  kurtosis  

128  3.348  9.366  11.838  78.97  6.395  110.425  3.287  18.483  

  

0 20 40 60 80 
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Table 2 MLEs of the parameter, Standard error (in parenthesis) of the LT-2TLT-2FD for the cancer 

remission time data  

𝑀𝑜𝑑𝑒𝑙  𝜆  𝑏  𝑎  𝑣  

𝐿𝑇 − 2𝑇𝐿𝑇 − 2𝐹  0.1615  

(0.0594)  

4.6067  

(1.1834)  

2.5024  

(0.4559)  

5.5024  

(1.4512)  

𝐿𝑇 − 2𝑇𝐿𝑇 − 2𝐼𝐸  1.0005  

(0.1356)  

−  

(−)  

0.3539  

(1.0987)  

2.112  

(0.5579)  

𝐿𝑇 − 2𝑇𝐿𝑇 − 2𝐼𝑊  −  

(−)  

0.6804  

(0.0633)  

0.6534  

(1.1281)  

1.7819  

(0.0765)  

𝑇𝐿 − 𝐹  0.3873  

(0.0587)  

2.5092  

(0.2876)  

−  

(−)  

8.9931  

(4.4713)  

𝐿𝑇 − 2 − 𝐹  0.3553  

(0.0410)  

  

5.4365  

(0.4676)  

12.4994  

(4.7131)  

−  

(−)  

𝐹  0.7531  

(0.0425)  

2.4257  

(0.2187)  

−  

(−)  

−  

(−)  

  

  

  

  

  

Table 3. Measures of goodness of fit for the cancer remission time data  

𝑀𝑜𝑑𝑒𝑙  −𝑙  𝐴𝐼𝐶  𝐶𝐴𝐼𝐶  𝐻𝑄𝐼𝐶  𝐾  𝐶𝑉  𝑃𝑉  

𝐿𝑇 − 2𝑇𝐿𝑇 − 2𝐹  411.14  830.23  830.56  843.87  0.0506  0.0527  0.8985  

𝐿𝑇 − 2𝑇𝐿𝑇 − 2𝐼𝐸  457.20  920.41  920.60  923.88  0.2062  1.1621  3.7e-5  

𝐿𝑇 − 2𝑇𝐿𝑇 − 2𝐼𝑊  445.55  897.09  897.28  900.57  0.1543  0.6211  0.0045  

𝑇𝐿 − 𝐹  417.23  840.47  840.66  843.94  0.0836  0.1601  0.3325  

𝐿𝑇 − 2 − 𝐹  415.66  837.33  837.52  840.80  0.0642  0.1294  0.6666  

𝐹  444.00  892.00  892.10  894.32  0.1399  0.7451  0.0134  

  

5.0  Conclusion   

We have proposed and developed the Type II Lehman Topp-Leone Type II Fréchet distribution along with its 

properties such as: descriptive measures based on the quantiles, moments, moment generating function, reliability 

model, Renyi entropy and order statistics. Maximum Likelihood estimates are computed. Goodness of fit shows 
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that Type II Lehman Topp-Leone Type II Fréchet distribution is a better fit. Applications of the Type II Lehman 

Topp-Leone Type II Fréchet model to cancer remission time data, demonstrate its applicability.  
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