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Abstract: In this article we develop a new four-parameters model
called the Lehman type Il Top-Leone Fréchet (LT-2TLT-2F)
distribution which exhibits non-monotone hazard rate. Many models
such as Lehman type Il Fréchet (LTIIF), Type Il Top-Leone Fréchet
(THTLF), Generalized Exponentiated Fréchet (GEF), and Fréchet (F)
are sub models. Some of its properties including moment, reliability,
moment generating function, Incomplete moments, and hazard rate are
investigated. The method of maximum likelihood is proposed to
estimate the model parameters. Moreover, we give the advantage of the

LT-2TLT-2F distribution by an application using two real datasets.

Keywords:  moments, moment generating function, non-monotone,

incomplete moments.

1.0  Introduction
Statistical distributions are very useful in describing and predicting real data analysis. Although many
distributions have been developed, there are always techniques for developing distributions which are flexible for
fitting real data analysis. The Fréchet distribution has found wide applications in extreme value theory. Some
extensions of the Fréchet distribution are suggested to attract representing various types of data. In this article,
we introduce and study mathematical properties of a new model referred to as the Lehman type II Top-Leone
Type II Fréchet distribution represents a special case of the new model. We hope that it will attract wider
applications in many other areas of scientific research. Some extensions of the Fréchet distribution are available
in the literature, see for example [ 1-6]. Consider the cumulative distribution function (cdf) and probability density
function (pdf) Lehman Type II Type II Top-Leone Fréchet distribution with cdf given by
Gx)=1—-[1— (ebx-2)Z]ar, (1) with corresponding pdf given by
g(x) — Zabvﬂbx—l—l(e—bx—/l )2[1 — (e—bx—/l )Z]Ua—l, (2)
where a, A and v are the two added shape parameters and b is a positive scale parameter.
The survival and the hazard function are given by
S =1-6(x) =[1— (e )2 (3)
and

g(x)  2abvAbx-i1-1(e-bx-1)2
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h(x) = s(x) = —bx-2)2)
(3.14)
(1-(e

The graphs of the cdf, pdf, s(x) and h(x) are respectively given in figures 1, 2, 3, and 4 respectively as

Graph of distribution function of LT-2TLT-2F distribution
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Figure 1. Graph of the distribution function of LT-2TLT-2FD
* Figurel indicates that the Lehman Type-2 Top-Leone Type-2 Fréchet distribution has a proper probability
density function which converges to one upon integration.

Graph of density function of LT-2TLT-2F distribution
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Figure 3.2. Graph of the density function of LT-2TLT-2FD
* Figure 2 indicates that the Probability density function of Lehman Type-2 Top-Leone Type-2 Fréchet

distribution is non-monotone.

Graph of survival function of LT-2TLT-2F distribution
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Figure 3. Graph of the survival function of LT-2TLT-2FD
Figure 3.3 indicates that the survival function of Lehman Type-2 Top-Leone Type-2 Fréchet distribution

approaches zero as time increases.
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Graph of hazard uncton of LT-FTLT-2F distribution
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Figure 4. Graph of the hazard function of LT-2TLT-2FD

Figure 4 indicates that the shape of the hazard function of Lehman Type-2 Top-Leone Type-2 Fréchet distribution
can be increasing, decreasing, non-monotonic and inverted bathtub failure rates.

A statistical expression for the reversed hazard y(x) and the cumulative hazard H(x) functions is given by
2abvAbx-21-1(e-bx=* )2[1 — (e-bx* )2]va—1

)/(X) = 1- [1 - (e—b"-a )Z]av
(5)
and
H(x) = log[F(x)] = log (1 = [1 = (e~?*-* )?]®) (6)

3.0 Statistical properties of the LT — 2TLT — 2FD The LT — 2TLT — 2FD can be re-written to a reduced
a model using generalized binomial series.

[oe]

J
1-w) = Z -1 ‘f( )
a-w) =) D) -
k=0
where, |w| < 1, k > 0. Now using the binomial series given in (7), The pdf of LT — 2TLT — 2FD can be can be
written as a mixture model as o follows:
_ 1) ra—1 . -
l[l (e—bx=2 )i E]W-—l — Z( )(_1)¢{:E—bx A )2
i=0
Consequently, the pdf of LT - %JTL a 1nzF D is given as
ra—1 _1
-1 be-ﬂ-l E-bx 2i+1l
g(x) = 2abvi ( [ )( ) ( ) , (8)

i=0
And can also be written as
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e

g(x) = 2abvAibx—*-1e=b(i+2x-1 Z (’m - 1) (—1) (9)

i

i=0

The expression given in (9) shows that the LT — 2TLT — 2FD is an infinite mixture representation of the Fréchet

distribution.

3.33  Quantile function and random number generation for LT — 2TL — T2FD

The quantile function of a distribution can be used to investigate the theoretical aspects of the probability

distribution, we can employ the use of the quantile function. Mathematically, the quantile function can be

expressed in form of Q(u) = F~3(u). Correspondingly, the quantile function of LT — 2TL — T2FD is obtained

by inverting (1) as follows: u =1 — [1 — (e—bx-1 )2]av

By making u the subject of formular, we derive an expression for the quantile function of LT — 2TL — T2FD as
1y

xu=(=1/bllog(1— (A —wVar) 2]) 2, (11)
An expression given in (3.19) can be used for random number generation to validate the method of maximum
likelihood used to obtain the value parameters of the distribution. The lower quartile (q1), middle quartile (q2)
and the upper quartile (g3)of the LT — 2TL — T2FD can be obtained by taking the values of u = 0.25,0.5, and
0.75 respectively in (3.19) as
3.3 Moments of LT — 2TL — T2FD
Moments are very properties for any statistical investigation, most especially in many application areas. Suppose
X~LT — 2TL —T2FD (a, b, A, v),then many important features such as dispersion, skewness, measures of central
tendency, and kurtosis of the LT — 2TL — T2FD model can be derived by using ordinary moments. The rth raw
moment of the LT — 2TL — T2FD model is obtained as

1 -1/

q1=x025= (— 1 /b [log (1 — (0.75)Ya) /2]) 1, (12)
2 -1/

q2=x0s=(— 1/b [log (1 — (0.5)Vav) /2]) 1, (13)
And
3 -1/

g3=x075= (= 1/b [log (1 — (0.25)Yav) /2]) 1. (14)
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X =y =
E “w XTg(x)dx, (15)
Inserting (9) in (15), we obtain
- va —1 . r

A

ur'=2abvi t Xr—(A+1)e—b(i+1)x-1 dX, (16)
i=0 —00

Letting y = b(i + 1)x=4, x =[b(1 + i)]Vay=13, dx = —A~1[b(1 + i)]V/2y—1/2~1dy, putting in (16), we have

= va — ]) . r=1

. —1)'2(i+a)]® f
Ur = ZavAZ( L S ) x~ /ey dy, (17)
i=0 0
Finally, we have,
va —
-1)i[2

w'= ZaMZ( i ) Y26+l T ~T/b), r<b. (18)

i=0
Where I'(1 — "' /b) is an incomplete gamma function. Expression for the mean (u1'= p) and the variance (uz =

u2'— u1'?) is obtained by taking r = 1 and 2, and is given as

[ee]

u= 2avzz (mr_ 1) 1'r(1- L/p). (19)

i=0

and
[oa]

-1 _ 1
R, (s [ LI A CE

i=0

_ (2.:.-,1:«,.1% (m B 1) (—1)! r(1 _ lfb))zl

i=0
Further, one can determine the rth central moment and rt* cumulant of X defined respectively by,

i , r r—1
{((X—w}= Z ( )ﬂr_,-ﬁ—i) j i, Kkr=ur' =Y (rj ——11) kjur'—j,

j=0 j=1
With k1= p. One can express several measures of skewness and kurtosis based cumulants (central moments)

(20)

ﬂr==E

Consequently, an expression for the variance, skewness and the kurtosis can respectively, be obtained as follows
o =y — [1l% 8k = p3(Vi2) ™ and ke = ua(uz) =2 respectively. Where
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ur=E[(x — p1)r], u3 = —3p2' pur' + p3' + 2(u1 )3 and pa = 6(u1' )2uz’ — 3(u1' )4 — 4us' ur' + u4a’

3.4  Moment generating function of LT — 2TLT — 2FD

The moment generating function (MGF) of a random variable X sometimes gives an alternative method that can
be used in describing the characteristics of a distribution. Mathematically, the MGF is defined as

Mx(t) = E(e®) =EX"). vy & 1)
r=0 r
Putting (18) in (21) for E(X") for LT — 2TLT — 2FD , we obtain
=t wa—1 _— r=1
Mx(t) = 2av/12 r_!( i )(_1) A+ 7y 22)
i=r=0

3.5  Entropies LT — 2TLT — 2FD
The Rényi entropy of a random variable X with density function f(x) can be described as a measure of variation
off uncertainty or randomness and its defined (for { > 0 and (# 1) as;

1R(E) = log[Z(D)], (23)
1-¢
where

©= [
z7 o dx (24)
Inserting (2) in =  (24), we have
¢

()= f 2 ZabvAbx—1-1(e—br1 )2[1 — (e=brr )2]va1] dx (25)

Upon ~*  simplification, we obtain
A+ +90
Z(Q)=ml (1 - ), (26)
A
where

= -1 1-{{A+1)
> (a4 per=F
nj = 2¢acbiA¢—1v¢ J j

j
Putting (26) in (23), we generate an expression for the Rényi entropy of LT — 2TL — T2 — FD as

1 A+DA+9
log [nI" (1 — )] (27)
1-¢ A

Ir($) =
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3.40 Order statistics

Given x1, x2, X3 . . ., Xxn as a random sample having CDF F(x). Let X1:1, X2:n, X3, . .., Xnn 1s the ordered sample
of size n, then the density of jt* order statistics is given as

2D =) FOOFQ)™, (28)
gj:n(X) =W
-

n!

Where W (n—riirl,
Putting (1) and (2) in (28), followed by simply algebraic manipulation gives

n—r

1 ko1

n—ril bj-1 fiz4
gm() =2apsiWe ¥ (Dm0 ( YA Y@
i k l m
i=k=l=m=0
X flx—(p+1)e—(m+1)ax—p_
4.0 Real Data Applications for LT — 2TLT — F Model
To demonstrate the flexibility proposed family of distributions, -2*log-likelihood statistic (—21[), Akaike

information criterion (AIC = 2p — 21), Consistent Akaike information criterion (CAIC =

p(p+1)
AIC + 2

n—p—1

2F model and its sub-models, where n is the number of observations, and p is the number of estimated parameters.
The goodness-of-fit statistic, Kolmogorov Smirnoff (K), Cramer—von Mises (CV'), and the probability value are
also presented in the Table. The best model corresponds among the class considered is the model having minimum
value AIC, HQIC, CAIC, K, and CV and the largest probability value as the best model. In this study, numerical
results (of maximum likelihood estimates and goodness of fit criteria) are calculated by using the goodness.fit (.)
command in the Model Adequacy package available in R language. The AIC, CAIC, HQIC, CV, K and P are
given for the sub-models Lehman Type-2 Top-Leone Type-2 Inverse Exponential (LT-2TLT-21E), Lehman Type-
2 Top-Leone Type-2 Inverted Weibull (LT-2TLT-21W), Type -2 Top-Leone Frechet (T-2TLF), Lehman Type-F
(LT-2F), and Frechet distribution. Two data applications are used to show how good the developed is in modeling
lifetime data.

The data represent the remission times (in months) of a random sample of 128 bladder cancer patients. For
previous study see Lee and Wang (2003). The Exploratory data analysis for the cancer data I of data is given in
Table 4.1, the Total Time on Test (TTT) plot is given in Figure 5, Tables 1, 2 and 3 gives the exploratory data
analysis for the cancer data, parameter estimates of the model and the model’s measures of goodness of fit

) and Hannan—Quinn information criterion (HQIC) are calculated for LT — ETLT —

respectively.
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Figure 4.1: Kernel density plot for cancer remission time data
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Figure 4.2 TTT plot for cancer remission time data
Table 1 Exploratory data analysis of cancer data

n q1 mean | g3 Range | median | variance | Skewness | kurtosis
128 3.348 |9.366 |11.838|78.97 |6.395 |110.425|3.287 18.483
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Table 2 MLEs of the parameter, Standard error (in parenthesis) of the LT-2TLT-2FD for the cancer

remission time data

Model A b a v

LT — 2TLT — 2F 0.1615 4.6067 2.5024 5.5024
(0.0594) (1.1834) (0.4559) (1.4512)

LT — 2TLT — 2IE | 1.0005 - 0.3539 2.112
(0.1356) (=) (1.0987) (0.5579)

LT = 2TLT - 2IW | — 0.6804 0.6534 1.7819
(=) (0.0633) (1.1281) (0.0765)

TL—-F 0.3873 2.5092 — 8.9931
(0.0587) (0.2876) =) (4.4713)

LT —-2—-F 0.3553 5.4365 12.4994 -
(0.0410) (0.4676) (4.7131) (=)

F 0.7531 2.4257 — —
(0.0425) (0.2187) (-) (=)

Table 3. Measures of goodness of fit for the cancer remission time data
Model -l AlC CAIC | HQIC |K cv PV

LT — 2TLT — 2F 411.14 | 830.23 | 830.56 | 843.87 | 0.0506 | 0.0527 | 0.8985
LT — 2TLT — 2IE 457.20 | 920.41 | 920.60 | 923.88 | 0.2062 | 1.1621 | 3.7e-5
LT — 2TLT — 2IW | 445.55 | 897.09 | 897.28 | 900.57 | 0.1543 | 0.6211 | 0.0045
TL—-F 417.23 | 840.47 | 840.66 | 843.94 | 0.0836 | 0.1601 | 0.3325
LT—-2-F 415.66 | 837.33 | 837.52 | 840.80 | 0.0642 | 0.1294 | 0.6666
F 444.00 | 892.00 | 892.10 | 894.32 | 0.1399 | 0.7451 | 0.0134

5.0 Conclusion

We have proposed and developed the Type II Lehman Topp-Leone Type II Fréchet distribution along with its
properties such as: descriptive measures based on the quantiles, moments, moment generating function, reliability
model, Renyi entropy and order statistics. Maximum Likelihood estimates are computed. Goodness of fit shows
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that Type II Lehman Topp-Leone Type II Fréchet distribution is a better fit. Applications of the Type II Lehman

Topp-Leone Type II Fréchet model to cancer remission time data, demonstrate its applicability.
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