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1. INTRODUCTION  

Formulation of the problem  

We consider the system having l parallel service channels where the units are served according to the negative 

exponential distribution with mean 1/ . The units arrive independently of each other with calling rate  per 

source per unit of the idle time following the Poisson distribution. Earlier the problem for steady-state case was 

considered by Saaty [2], Jackson and Henderson [1] for infinite number of sources. We assume the number of 

sources to be finite, say N, and as soon as the units in service depart from the system next units come for service 

and consequently there is an input in the system depending o the state k of the system (i.e. on the number of busy 

sources). It will be assumed here that the input k is proportional to the number of idle sources, that is  

   k = (N −k) (k = 0,1,2, , N) .  

Saaty [2] studied the time dependent solution of the problem taking infinite number of sources using the 

generating functions and Laplace transform techniques. Later on, Jackson and Henderson [1] studied the same 

problem but used the slightly modified Laplace transform procedure. Here we shall solve the problem for time 

dependent case using an alternative method which is quite easy in comparison to the generating functions 

technique, imposing the condition of finiteness stated above.  

We assume the first-come-first-served discipline and also that initially there are i units present in the system.  

Equations and their solution  

Let p k t( , ) denotes the transition probability of the event that at time t the system is in the state k whle initially 

it is in the state i. The differential-difference equations are:  

  dp(0,t) / dt =− Np(0,t)+ p(1,t)  (1)  

  dp k t( , )/ dt = (N − +k1) p k( −1,t)− (N −k)+k  p k t( , )  

    + +(k 1) p k( +1,t) 0  k l  (2)  

  dp k t( , )/ dt = (N − +k1) p k( −1,t)− (N −k)+l  p k t l p k( , )  ( +1,t)  

    1  k N  (3)  
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  dp N t( , ) / dt = p N( −1,t)−l p N t( , )  (4)  

with initial condition p k( ,)= ik .  

1. Steady-State Case. This case has been discussed by many authors (See Saaty [3]). The steady-state 

equations can be obtained simply by putting  

 dp(0,t) dp k t( , ) dp 

  ,  and  (N t, ) dt dt dt 

equal to zero in eqns. (1)-(4). The then system of eqns. (1)-(4) becomes on some simplification,  

  (k +1) p k(+ − −1) (N k) p k( )= 0,0  k l  

  l p k( + − −1) (N k) p k( )= 0,1  k N −1  (5)  

The solution of eqns. (5) is obtained by simply putting k = 0, 1, 2, 3, …, N – 1 and simplifying the resulting 

equations, we get  

k 

  p k( )= p(0)    k!(NN−! k)!,  k l  

  

k 

    = p(0)     k!(NN−! k)!ll k− kl!!, l  k   (6)  

p(0) can be determined from the condition  

N 

   p k( )=1  

k=0 

2. Time Dependent Case. We write the above system of equations as (using bold letters for matrix 

representation):  

  ( I−A) p(k t, )= 0  (7)  

where  d dt/,0 the null matrix,  

 
 p(0,t)  

 p(1, t)  

and  p(k t, ) =  p(2,t)   

    is the    identity matrix   

  

I ( ) ( ) 1 1 N N + +  

( ) 

( ) ( ) 

( ) ( )   ( ) 

( ) ( ) 

  

0 0 0 

2 1 0 0 

3 22 0 1 0 0 

0 

0 

2 1 1 0 

0 1 

0 

0 

2 

0 0 

N 

N N 

N 

N l l N l l 

l l l N N l 

l l 

l 

  

    

   

   

    

  

  

− 

− −+     

+ − − −     

=   −− −− − +−       

−+ − −−         

+ − 
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p N t( , )  

Let C−1 and C be the left and right eigenmatrices of A, then  

  C AC D−1 =  (8) where D = diag(d d d0, 1, 2, ,dN ),d d d0, 1, 2, ,dN being the eigen-

values of A.  

premultiplying (7) by C−1 and using (8), we get  

  ( I−D G) (k t, )= 0  (9)  

where G(k t, )= C−1 p(k t, )  (10)  

and C is the transformation matrix. If we determine G(k t, ) then p(k t, ) can be determined by the inverse transform  

  p(k t, )= CG(k t, )  (11)  

Eqn. (9) is a Linear Matrix Differential Equation in G(k t, ) whose solution is given by  

  G(k t, )= exp(D Lt)   (12)  

Where L =G(k,0)=C−1 p(k,0) and p(k,0) is a column vector, all of whose elements are 0 except the ith, which is 1.  

Hence we get  

  p(k t, )= Cexp(Dt C) −1 p(k,0)  (13)  

3. Some Other Results. If ckr is the element of matrix C in kth row and rth column and cr i is the element in rth 

row of the resultant multiplication matrix of C−1 and p(k,0) (i.e., C−1 p(k,0) ; where p(k,0) is the column vector 

with all elements zero except the ith, which is 1), then the calling rate R for the system can be determined from  

 N N N 

  R = k p k t( , ) = (N − K C C) krri  +  C C d tkr r i k (N − K)  

 k=0 k=0 r k, =0 

 1 N N −k C C d t) kr

 ri  k2 2 + time dependent case.  

    + 2!r k , =0 ( 

N 

    = k p k( ) steady-state case  (14)  

k=0 

where  k = (N −k),(k = 0,1,2, , N) and p k( ) is given by (6).  

The traffic offered is given by  

 R N  

  Tr =  = r k , =0 (N −k C C) kr ri   

N 

 

    +r k ,0 (N −k C C d t) kr ri  k  

= 

 1N  N −k C C d t) kr  ri  k2 2 +  

    + ( 

2!r k, =0 

+ 
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Note that the traffic intensity in our case is l =  / l .  (15)  

The termination rate  can be determined from:  

 N  l−1l−1 k C C d t  ri 1 l−1  2 2  

 =  k p k t( , ) =   k C C  krri  +  kr k +  k C C d t  kr ri  k +   

2! 

 k=0 r k, =0 r k, =0 r k, =0  

  N N 1 N 2 2  

  +  l C C  krri  +  l C C d t  krri  k + 2!  l C C d t  krri  k +  time-

dependent case.  

 r k l, = r k l, = r k l, =  

N 

  = k p k( ) steady-state case.  (16)  

k=0 

where  k = k for 0   −kl 1 and l  for k  l .  

In equilibrium, traffic offered is given by  

 R  1 N 1  l−1 N  

  Tr =   == k 0 k p k( ) = k=0 k p k( )+ k l= l p k  ( )   

= 

 l−1 N 

    = kp k( )+l  p k( )  (17)  

k=0 k l= since the termination rate coincides with the calling rate.  

Let us define the waiting traffic by  

 N N N 

  Trw = (k −l p k t) ( , ) = (k −l C C) krr 1 + (k −l C C d t) kr ri  k  

 k l= r k l, = r k l, = 

 1 N k −l C C d t) krri  k2 2  for time dependent case  

    + 2!r k l , = ( 

N 

  = (k −l p k) ( ) for steady-state case  (18)  

k l= 

then the average number of busy sources or alternatively, the average number of calls either being served or 

awaiting service is given by  

  E Y( )= +Tr Trw  (19)  

Example. Let us consider the simple case, where  =1, = =1,l 2,N = 2 .  

We have     

  

−2 

A=  2 

 

1 

−2 

1 

0  p(0,t)  

2 , p(k t, )=  p(1,t)   

 

+ 
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 0 −2  p(2,t)  

The eigenvalues of A are d0 = 0,d1 =−2,d2 =−4.  

1 

  C = 2 

 

1 

−1 

0 

1 

1  

−2 ,C−1 

= 

 1  

 2 

1  

4 

− 

8  

 2 

2 

0 

−2 

2  

4   

 

2  

 1 

Assuming i = 0, we may write p(k,0) =  
 0  

  0 
D t2 2 

and taking eDt = I + Dt + + , (where D is the diagonal matrix and t a scalar), we have 2! 

 p(0,t)  1 −1 1  

  p(k t, )=  p(1,t) = 2 0 −2   

 p(2,t)  1 1 1  

    

    

   1−2t   3t2  

 0 

 0 

I +  

0 

−2 

0 

0  0 0 

0 t + 0 −2 

   

0 2 2  

0  t   

  2!  

−4   

2 2   1 

0 4    0  

   

−22    

 0 

 

 

0 −4  0 0 

 2 

1  

4 

− 

8  

 2 

  =   0 + 2t + −  4t2 +  

     

     00   t2  

   p(0,t)= − + +1 2t 3t2 ,  p(1,t)= − +2t 4t2 ,  p(2,t)= +t2   

Thus, all the probabilities are obtained as polynomials in t.  
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