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1. INTRODUCTION  

In this paper, we consider the second order ordinary differential equation with constant coefficient of the form  

𝑟″ + 𝑎𝑟′ + 𝑏𝑟 = ℎ(𝑥) + 𝑞(𝑥‚ 𝑟)‚ (1)  

r(0) = A‚ r′ = B  

Where q (x, r) is nonlinear function, h(x) is given function and A, B, a, b are constants. The purpose of this paper 

to introduce a new differential operator to study the problem (1).  

In resent year a large amount of research developed concerning Adomian decomposition method [1, 5, 7], and the 

related modification [6, 8, 9, 11] to investing various scientific models. The method provides the solution as an 

infinite series in which each term can be easily determined.  

2. ANALYSIS OF THE METHOD  

Under the transformation a= m-2n and b= n(n-m) the equation (1) is transformed to  

r″ + (m − 2n)r′ + n(n − m)r = h(x) + q(x‚r)‚ (2)  

Where m, n are constants.  

We propose the new differential operator, as blew  

L(∙) = enx d e−mx d e(m−n)x(∙)‚ (3) dx dx 

So, the problem (2) can be written as,  

Lr = h(x) + q(x‚r) ∙ (4)  

The inverse operator 𝐿−1 is therefore considered a two-fold integeral operator, as below,  

L−1`(∙) = e−(m−n)x ∫0x emx ∫0x e−nx (∙) dxdxꞏ (5)  

Applying L−1 of (5) to the third terms r″ + (m − 2n)r′ + n(n − m)r 𝑜𝑓 Eq ∙ (2)we find  
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L−1(r″ + (m − 2n)r′ + n(n − m)r)  

=e−(m−n)x ∫0x emx  dxdx  

=e−(m−n) ∫0x emx(e−nx r′ − (n − m)e−nxr − r′(0) + (n − m)r(0))dx  

=r − e−(m−n)xr(0) − r′(0) enx + r′(0) e−(m−n)x e−(m−n)x ∙ m m m m 

Operating with 𝐿−1 on (4), it follows  

 r′(0) r′(0) n − m n − m 

r(x) = e−(m−n)xr(0) + enx − e−(m−n)x −   r(0)enx +   r(0)e−(m−n)x + L−1h(x) + L−1q(x‚ r) m

 m m m 

∙ (6)  

The Adomian decomposition method introduce the solution r(x) and the non-linear function q(x, r) by infinite 

series  

r(x) = ∑∞
n=0 rn(x)‚ (7)  

and  

q(x‚ r) = ∑∞
n=0 An ‚ (8)  

Where the components (𝑥) of the solution r(x) will be determined recurrently specific algorithums were seen in 

[7,10] to formulate Adomian polynomials.The following algorithum:  

A0 = F(u)‚  

A1 = F′(u0)u1‚  

  
′(u0)u2 + 1 F″(u0)u1

2
‚  

A2 = F 

2 

A 1‚ (9)  

∙  

∙  

∙  

Can be used construct Adomian polynomials, when F(u) is a nonlinear function. By substituting (7) and (8) into 

(6),  

 An 

n=0 n=0 

∙ (10)  

Through using Adomian decomposition method, the components (𝑥) can be determined as  

r′(0) nx − r′(0) e−(m−n)x − n−m r(0)enx + n−m r(0)e−(m−n)x + r0 = e−(m−n)xr(0) + m e m m m 

L−1h(x)‚ (11)  

rn+1 = L−1An‚ n ≥ 0‚  

Which gives  
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( 0 ) − x √ z 1 

r′(0) nx − r′(0) e−(m−n)x − n−m r(0)enx + n−m r(0)e−(m−n)x + L−1h(x)‚ r0 = e−(m−n)xr(0) 

+ m e m m m 

r1 = L−1A0‚ r2 = L−1A1‚  

𝑟3 = 𝐿−1𝐴2 (12) 

From (9) and (12), we can determine the components (𝑥)‚ and hence the series solution of r(x) in (7) can be 

immediately obtained. For numerical purposes, the n-term approximant  

𝑛−1 

𝜑𝑛 = ∑ 𝑟𝑛‚ (13)  

𝑛=0 

Can be used to approximate the exact solution [11]. The approach presented above can be validated by testing it 

on a variety of several linear and nonlinear initial value problem.  

3. NUMERICAL ILLUSTRATION  

We first consider two types of the linear homogenous initial value problem  

Type 1: r″ − zr = 0 ∙ Where z = 1‚2‚3‚4‚5‚ ∙ ∙ ∙  

Type 2: 𝑟″ + 𝑧𝑟 = 0 ∙ Where z = 1‚2‚3‚4‚5‚ ∙ ∙ ∙  

Example 1. We consider the type 1  

 r″ − zr = 0 ∙ (14) Where z = 1‚2‚3‚4‚5‚ ∙ ∙ ∙  

r (0) = 1‚ r′(0) = 0 ∙  

We put m-2n=0 and n(n-m) =𝑧  

It follows that m=2n, n ‚  

Substitution of n  and m  in Eq. (3) yields the operator d d 

L(∙) = ex√z e−2x√z  ex√z(∙)‚ dx dx 

So  

L  dxdx ∙  

In an operator from Eq. (14) becomes  

Lr = 0 ∙ (15)  

Applying 𝐿−1 on both sides of (5) we find  

L−1Lr = 0‚  

And it implies,  

r = e √r′(0) ex  − r′ e + r(0)ex   

 2√z 2 

  
Example 2. We consider type 2  

𝑟″ + 𝑧𝑟 = 0 ∙ (16) Where z = 1‚2‚3‚4‚5‚ ∙ ∙ ∙  

r(0) = 1‚ r′(0) = 0 ∙  

We put m − 2n = 0 and n(n − m) = z‚  

It follows that n ‚ where i = √−1‚  

√ z − 
1 

2 
r ( 0 ) e − x √ z − x z r ( 0 ) + 

2 √ z 
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( 0 ) 
− ix √ z 1 

√ z 1 
− ix √ z 

Substitution of n  and m  in Eq ∙ (3) yield the operator  

ix√z d e−2ix√z d eix√z(∙) L(∙) = e 

 dx dx 

So  

x 

e dxdx ∙  L

In an operator from, Eq. (16) becomes  

Lr = 0 ∙ (17)  

ApplyingL−1 on both sides of(17) we find  

L−1Lr = 0‚  

And it implies,  

 r′(0)r′ ix − r(0)e   

r = e √ e− e + r(0)e 

 2i√z 2 2 

  
From two types we observation that, the exact solution is easily obtained by this method.  

  

Example 3. We consider the linear non-homogenous initial value problem:  

r″ + 3r′ − 10r = x‚ (18)  

(0) = 4‚ 𝑟′(0) = −2 ∙  

  We put m − 2n = 3 and n(n − m) = −10  

 It follows that 𝑛 = 2‚ 𝑛 = −5 𝑎𝑛𝑑 𝑚 = ±7‚  

 Substitution of n=2 and m=7 in Eq. (3) yield the operator  

2x d e−7x d e5x(∙)‚ L(∙) = e 

 dx dx 

So  

 x x 

L−1(∙) = e−5x ∫ e7x ∫ e−2x(∙)dxdx ∙  

 0 0 

In an operator from, Eq. (18) becomes  

𝐿𝑟 = 𝑥ꞏ (19)  

Applying L−1 on both sides of (19) we find  

 x x 

L−1Lr = e−5x ∫ e7x ∫ 𝑒−2𝑥(x)dxdx‚  

 0 0 

And it implies  

 r′(0) r′(0) 5 5 1 x 3 4 

r  e−5x  e2x r  e−5x r 5x ∙  

− ix z r ( 0 ) + 
i 2 √ z 
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It implies  

𝑟   

So, the exact solution is easily obtained by this method.  

  

Example 4. In this example will display if m=n the Eq. (3) becomes  

 r″ − mr′ = h(x) + q(x‚r)‚ (20)  

the differential operator in Eq. (3) becomes  

 d d 

L(∙) = emx e−mx (∙)‚ dx dx 

If m=n=1, and h(x)=0, and q(x, r)=r2 the Eq. (20) becomes  

r″ − r′ = r2 (21)  

(0) = 1‚ 𝑟′(0) = 0  

The equation (21) is nonlinear, the differential operator becomes  
x d e−x d (∙)‚  

L(∙) = e dx dx 

So  

 x x 

L−1(∙) = ∫ e−x ∫ ex(∙)dxdx ∙  

 0 0 

According to (21) we have  

Lr = r2‚  

Proceeding as before we obtain  

r0 = r(0) + r′(0)ex − r′(0) = 1 rn+1 = L−1An‚ n ≥ 0  

When 𝐴𝑛’s are Adomian polynomials of nonlinear term r2 as below[8]  

A0 = r02‚  

A1 = 2r0r1‚  

A2 = 2r0r2 + r12‚  

then  

r0 = 1  

x2 r1 =   

2 

x4 

r2 =   

12 

x6 

r3 =   

72 
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This means that the solution in a series form is given by  

x2 x4 x6 r  ‚  

And in the closed form  

  

r(x) = ex2 ∙  

4. CONCLUSION  

In this paper, we offered a new differential operator for solving second order ordinary differential equation with 

constant coefficient. The examples presented in this paper illustrated the quality of the Adomian decomposition 

method for finding the solution. In example 1 and 2 and 3 we got the exact solution. In example 4 the results were 

very closed to exact solution. This indicate that the method is very efficient to solve equations considered.  
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